|
---
|
|
library_name: transformers
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- f1
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
model-index:
|
|
- name: ModernBERT-large-nli-clf
|
|
results: []
|
|
datasets:
|
|
- param-bharat/scorers-nli
|
|
base_model:
|
|
- answerdotai/ModernBERT-large
|
|
pipeline_tag: text-classification
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ModernBERT-large-nli-clf |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0124 |
|
- F1: 0.7754 |
|
- Accuracy: 0.7754 |
|
- Precision: 0.7754 |
|
- Recall: 0.7754 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 128 |
|
- seed: 2024 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 512 |
|
- total_eval_batch_size: 1024 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:| |
|
| No log | 0 | 0 | 0.0114 | 0.8209 | 0.821 | 0.8211 | 0.821 | |
|
| 0.0103 | 0.3000 | 7956 | 0.0116 | 0.8576 | 0.8589 | 0.8705 | 0.8589 | |
|
| 0.0091 | 0.5999 | 15912 | 0.0091 | 0.8945 | 0.8945 | 0.8945 | 0.8945 | |
|
| 0.0097 | 0.8999 | 23868 | 0.0096 | 0.8874 | 0.8874 | 0.8880 | 0.8874 | |
|
| 0.0078 | 1.1999 | 31824 | 0.0088 | 0.8957 | 0.8957 | 0.8957 | 0.8957 | |
|
| 0.0174 | 1.4998 | 39780 | 0.0174 | 0.6024 | 0.6113 | 0.6195 | 0.6113 | |
|
| 0.0136 | 1.7998 | 47736 | 0.0134 | 0.7344 | 0.7344 | 0.7344 | 0.7344 | |
|
| 0.0129 | 2.0998 | 55692 | 0.0131 | 0.7370 | 0.7408 | 0.7531 | 0.7408 | |
|
| 0.0125 | 2.3997 | 63648 | 0.0125 | 0.7530 | 0.753 | 0.7530 | 0.753 | |
|
| 0.0129 | 2.6997 | 71604 | 0.0124 | 0.7724 | 0.7724 | 0.7724 | 0.7724 | |
|
| 0.0125 | 2.9997 | 79560 | 0.0124 | 0.7754 | 0.7754 | 0.7754 | 0.7754 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |