param-bharat's picture
Update Model Card
a3c1133 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
  - precision
  - recall
model-index:
  - name: ModernBERT-large-nli-clf
    results: []
datasets:
  - param-bharat/scorers-nli
base_model:
  - answerdotai/ModernBERT-large
pipeline_tag: text-classification

ModernBERT-large-nli-clf

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0124
  • F1: 0.7754
  • Accuracy: 0.7754
  • Precision: 0.7754
  • Recall: 0.7754

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 2024
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 512
  • total_eval_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy Precision Recall
No log 0 0 0.0114 0.8209 0.821 0.8211 0.821
0.0103 0.3000 7956 0.0116 0.8576 0.8589 0.8705 0.8589
0.0091 0.5999 15912 0.0091 0.8945 0.8945 0.8945 0.8945
0.0097 0.8999 23868 0.0096 0.8874 0.8874 0.8880 0.8874
0.0078 1.1999 31824 0.0088 0.8957 0.8957 0.8957 0.8957
0.0174 1.4998 39780 0.0174 0.6024 0.6113 0.6195 0.6113
0.0136 1.7998 47736 0.0134 0.7344 0.7344 0.7344 0.7344
0.0129 2.0998 55692 0.0131 0.7370 0.7408 0.7531 0.7408
0.0125 2.3997 63648 0.0125 0.7530 0.753 0.7530 0.753
0.0129 2.6997 71604 0.0124 0.7724 0.7724 0.7724 0.7724
0.0125 2.9997 79560 0.0124 0.7754 0.7754 0.7754 0.7754

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0