|
--- |
|
license: apache-2.0 |
|
base_model: google/t5-v1_1-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: SChem5Labels-google-t5-v1_1-large-intra_model-sorted-human_annots_str |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SChem5Labels-google-t5-v1_1-large-intra_model-sorted-human_annots_str |
|
|
|
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6221 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 20.7839 | 1.0 | 25 | 25.3269 | |
|
| 20.0699 | 2.0 | 50 | 21.6598 | |
|
| 19.1726 | 3.0 | 75 | 21.6652 | |
|
| 17.222 | 4.0 | 100 | 15.0207 | |
|
| 14.7785 | 5.0 | 125 | 10.0582 | |
|
| 12.0504 | 6.0 | 150 | 9.4216 | |
|
| 11.1003 | 7.0 | 175 | 9.0795 | |
|
| 9.259 | 8.0 | 200 | 8.7145 | |
|
| 8.4364 | 9.0 | 225 | 8.5969 | |
|
| 8.0676 | 10.0 | 250 | 8.5227 | |
|
| 7.975 | 11.0 | 275 | 8.4316 | |
|
| 7.9747 | 12.0 | 300 | 8.3585 | |
|
| 7.8189 | 13.0 | 325 | 8.2247 | |
|
| 7.6989 | 14.0 | 350 | 7.9381 | |
|
| 7.3673 | 15.0 | 375 | 7.5837 | |
|
| 7.234 | 16.0 | 400 | 7.3654 | |
|
| 7.0686 | 17.0 | 425 | 7.2360 | |
|
| 6.8718 | 18.0 | 450 | 7.1579 | |
|
| 6.8965 | 19.0 | 475 | 7.1054 | |
|
| 6.7995 | 20.0 | 500 | 7.0521 | |
|
| 6.6533 | 21.0 | 525 | 6.9925 | |
|
| 6.5043 | 22.0 | 550 | 6.8905 | |
|
| 1.2868 | 23.0 | 575 | 0.6607 | |
|
| 0.6465 | 24.0 | 600 | 0.5685 | |
|
| 0.6195 | 25.0 | 625 | 0.5598 | |
|
| 0.5945 | 26.0 | 650 | 0.5600 | |
|
| 0.594 | 27.0 | 675 | 0.5565 | |
|
| 0.5851 | 28.0 | 700 | 0.5554 | |
|
| 0.5986 | 29.0 | 725 | 0.5510 | |
|
| 0.5854 | 30.0 | 750 | 0.5502 | |
|
| 0.6018 | 31.0 | 775 | 0.5525 | |
|
| 0.5922 | 32.0 | 800 | 0.5482 | |
|
| 0.5871 | 33.0 | 825 | 0.5504 | |
|
| 0.586 | 34.0 | 850 | 0.5498 | |
|
| 0.5847 | 35.0 | 875 | 0.5498 | |
|
| 0.5954 | 36.0 | 900 | 0.5502 | |
|
| 0.5892 | 37.0 | 925 | 0.5470 | |
|
| 0.5853 | 38.0 | 950 | 0.5510 | |
|
| 0.5892 | 39.0 | 975 | 0.5483 | |
|
| 0.5879 | 40.0 | 1000 | 0.5491 | |
|
| 0.5768 | 41.0 | 1025 | 0.5488 | |
|
| 0.5886 | 42.0 | 1050 | 0.5530 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.14.1 |
|
|