File size: 3,492 Bytes
91b52aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: apache-2.0
base_model: google/t5-v1_1-large
tags:
- generated_from_trainer
model-index:
- name: SChem5Labels-google-t5-v1_1-large-intra_model-sorted-human_annots_str
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SChem5Labels-google-t5-v1_1-large-intra_model-sorted-human_annots_str
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6221
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 20.7839 | 1.0 | 25 | 25.3269 |
| 20.0699 | 2.0 | 50 | 21.6598 |
| 19.1726 | 3.0 | 75 | 21.6652 |
| 17.222 | 4.0 | 100 | 15.0207 |
| 14.7785 | 5.0 | 125 | 10.0582 |
| 12.0504 | 6.0 | 150 | 9.4216 |
| 11.1003 | 7.0 | 175 | 9.0795 |
| 9.259 | 8.0 | 200 | 8.7145 |
| 8.4364 | 9.0 | 225 | 8.5969 |
| 8.0676 | 10.0 | 250 | 8.5227 |
| 7.975 | 11.0 | 275 | 8.4316 |
| 7.9747 | 12.0 | 300 | 8.3585 |
| 7.8189 | 13.0 | 325 | 8.2247 |
| 7.6989 | 14.0 | 350 | 7.9381 |
| 7.3673 | 15.0 | 375 | 7.5837 |
| 7.234 | 16.0 | 400 | 7.3654 |
| 7.0686 | 17.0 | 425 | 7.2360 |
| 6.8718 | 18.0 | 450 | 7.1579 |
| 6.8965 | 19.0 | 475 | 7.1054 |
| 6.7995 | 20.0 | 500 | 7.0521 |
| 6.6533 | 21.0 | 525 | 6.9925 |
| 6.5043 | 22.0 | 550 | 6.8905 |
| 1.2868 | 23.0 | 575 | 0.6607 |
| 0.6465 | 24.0 | 600 | 0.5685 |
| 0.6195 | 25.0 | 625 | 0.5598 |
| 0.5945 | 26.0 | 650 | 0.5600 |
| 0.594 | 27.0 | 675 | 0.5565 |
| 0.5851 | 28.0 | 700 | 0.5554 |
| 0.5986 | 29.0 | 725 | 0.5510 |
| 0.5854 | 30.0 | 750 | 0.5502 |
| 0.6018 | 31.0 | 775 | 0.5525 |
| 0.5922 | 32.0 | 800 | 0.5482 |
| 0.5871 | 33.0 | 825 | 0.5504 |
| 0.586 | 34.0 | 850 | 0.5498 |
| 0.5847 | 35.0 | 875 | 0.5498 |
| 0.5954 | 36.0 | 900 | 0.5502 |
| 0.5892 | 37.0 | 925 | 0.5470 |
| 0.5853 | 38.0 | 950 | 0.5510 |
| 0.5892 | 39.0 | 975 | 0.5483 |
| 0.5879 | 40.0 | 1000 | 0.5491 |
| 0.5768 | 41.0 | 1025 | 0.5488 |
| 0.5886 | 42.0 | 1050 | 0.5530 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.6.1
- Tokenizers 0.14.1
|