|
--- |
|
license: apache-2.0 |
|
base_model: google/t5-v1_1-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: SChem5Labels-google-t5-v1_1-large-intra_model-shuffle-human_annots_str |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SChem5Labels-google-t5-v1_1-large-intra_model-shuffle-human_annots_str |
|
|
|
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2617 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 20.6863 | 1.0 | 25 | 23.6720 | |
|
| 19.4335 | 2.0 | 50 | 19.9692 | |
|
| 18.2125 | 3.0 | 75 | 14.6175 | |
|
| 16.4919 | 4.0 | 100 | 11.6548 | |
|
| 15.9533 | 5.0 | 125 | 10.4693 | |
|
| 14.4388 | 6.0 | 150 | 9.6944 | |
|
| 12.4697 | 7.0 | 175 | 9.3650 | |
|
| 10.5569 | 8.0 | 200 | 9.1423 | |
|
| 9.2725 | 9.0 | 225 | 9.0209 | |
|
| 8.4222 | 10.0 | 250 | 8.8843 | |
|
| 8.3219 | 11.0 | 275 | 8.8191 | |
|
| 8.3309 | 12.0 | 300 | 8.7311 | |
|
| 8.1401 | 13.0 | 325 | 8.5687 | |
|
| 8.0179 | 14.0 | 350 | 8.2683 | |
|
| 7.7326 | 15.0 | 375 | 7.9618 | |
|
| 7.606 | 16.0 | 400 | 7.7520 | |
|
| 7.4445 | 17.0 | 425 | 7.6258 | |
|
| 7.2501 | 18.0 | 450 | 7.5502 | |
|
| 7.2915 | 19.0 | 475 | 7.5063 | |
|
| 7.2094 | 20.0 | 500 | 7.4555 | |
|
| 7.0879 | 21.0 | 525 | 7.3983 | |
|
| 7.1268 | 22.0 | 550 | 7.3460 | |
|
| 6.623 | 23.0 | 575 | 0.9955 | |
|
| 1.0983 | 24.0 | 600 | 0.9945 | |
|
| 1.0196 | 25.0 | 625 | 0.9727 | |
|
| 0.9822 | 26.0 | 650 | 0.9680 | |
|
| 0.9827 | 27.0 | 675 | 0.9678 | |
|
| 0.9832 | 28.0 | 700 | 0.9646 | |
|
| 0.9983 | 29.0 | 725 | 0.9679 | |
|
| 0.982 | 30.0 | 750 | 0.9610 | |
|
| 1.0109 | 31.0 | 775 | 0.9632 | |
|
| 0.9972 | 32.0 | 800 | 0.9628 | |
|
| 0.9906 | 33.0 | 825 | 0.9634 | |
|
| 0.9886 | 34.0 | 850 | 0.9634 | |
|
| 0.9811 | 35.0 | 875 | 0.9649 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.14.1 |
|
|