metadata
license: apache-2.0
base_model: google/t5-v1_1-large
tags:
- generated_from_trainer
model-index:
- name: SChem5Labels-google-t5-v1_1-large-intra_model-shuffle-human_annots_str
results: []
SChem5Labels-google-t5-v1_1-large-intra_model-shuffle-human_annots_str
This model is a fine-tuned version of google/t5-v1_1-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2617
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
20.6863 | 1.0 | 25 | 23.6720 |
19.4335 | 2.0 | 50 | 19.9692 |
18.2125 | 3.0 | 75 | 14.6175 |
16.4919 | 4.0 | 100 | 11.6548 |
15.9533 | 5.0 | 125 | 10.4693 |
14.4388 | 6.0 | 150 | 9.6944 |
12.4697 | 7.0 | 175 | 9.3650 |
10.5569 | 8.0 | 200 | 9.1423 |
9.2725 | 9.0 | 225 | 9.0209 |
8.4222 | 10.0 | 250 | 8.8843 |
8.3219 | 11.0 | 275 | 8.8191 |
8.3309 | 12.0 | 300 | 8.7311 |
8.1401 | 13.0 | 325 | 8.5687 |
8.0179 | 14.0 | 350 | 8.2683 |
7.7326 | 15.0 | 375 | 7.9618 |
7.606 | 16.0 | 400 | 7.7520 |
7.4445 | 17.0 | 425 | 7.6258 |
7.2501 | 18.0 | 450 | 7.5502 |
7.2915 | 19.0 | 475 | 7.5063 |
7.2094 | 20.0 | 500 | 7.4555 |
7.0879 | 21.0 | 525 | 7.3983 |
7.1268 | 22.0 | 550 | 7.3460 |
6.623 | 23.0 | 575 | 0.9955 |
1.0983 | 24.0 | 600 | 0.9945 |
1.0196 | 25.0 | 625 | 0.9727 |
0.9822 | 26.0 | 650 | 0.9680 |
0.9827 | 27.0 | 675 | 0.9678 |
0.9832 | 28.0 | 700 | 0.9646 |
0.9983 | 29.0 | 725 | 0.9679 |
0.982 | 30.0 | 750 | 0.9610 |
1.0109 | 31.0 | 775 | 0.9632 |
0.9972 | 32.0 | 800 | 0.9628 |
0.9906 | 33.0 | 825 | 0.9634 |
0.9886 | 34.0 | 850 | 0.9634 |
0.9811 | 35.0 | 875 | 0.9649 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.6.1
- Tokenizers 0.14.1