owanr's picture
End of training
d28cbea
---
license: apache-2.0
base_model: google/t5-v1_1-large
tags:
- generated_from_trainer
model-index:
- name: SChem5Labels-google-t5-v1_1-large-intra_model-frequency-human_annots_str
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SChem5Labels-google-t5-v1_1-large-intra_model-frequency-human_annots_str
This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3184
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 20.7337 | 1.0 | 25 | 23.6105 |
| 19.8181 | 2.0 | 50 | 21.7021 |
| 18.5121 | 3.0 | 75 | 18.6451 |
| 16.2008 | 4.0 | 100 | 12.8515 |
| 14.7585 | 5.0 | 125 | 10.1513 |
| 11.4985 | 6.0 | 150 | 9.3063 |
| 10.0012 | 7.0 | 175 | 9.0999 |
| 8.6447 | 8.0 | 200 | 8.8536 |
| 8.3766 | 9.0 | 225 | 8.7377 |
| 8.1231 | 10.0 | 250 | 8.6065 |
| 8.0504 | 11.0 | 275 | 8.4953 |
| 8.0051 | 12.0 | 300 | 8.3466 |
| 7.7615 | 13.0 | 325 | 8.1101 |
| 7.6344 | 14.0 | 350 | 7.8434 |
| 7.3869 | 15.0 | 375 | 7.6118 |
| 7.3158 | 16.0 | 400 | 7.4364 |
| 7.1667 | 17.0 | 425 | 7.3245 |
| 6.988 | 18.0 | 450 | 7.2732 |
| 7.0234 | 19.0 | 475 | 7.2125 |
| 6.9602 | 20.0 | 500 | 7.1699 |
| 6.8268 | 21.0 | 525 | 7.1251 |
| 6.8999 | 22.0 | 550 | 7.0695 |
| 6.3358 | 23.0 | 575 | 0.6967 |
| 0.86 | 24.0 | 600 | 0.6708 |
| 0.7148 | 25.0 | 625 | 0.6347 |
| 0.674 | 26.0 | 650 | 0.6297 |
| 0.6683 | 27.0 | 675 | 0.6234 |
| 0.6711 | 28.0 | 700 | 0.6214 |
| 0.6773 | 29.0 | 725 | 0.6170 |
| 0.6596 | 30.0 | 750 | 0.6162 |
| 0.6812 | 31.0 | 775 | 0.6207 |
| 0.6813 | 32.0 | 800 | 0.6121 |
| 0.6655 | 33.0 | 825 | 0.6147 |
| 0.653 | 34.0 | 850 | 0.6112 |
| 0.651 | 35.0 | 875 | 0.6082 |
| 0.6659 | 36.0 | 900 | 0.6075 |
| 0.6639 | 37.0 | 925 | 0.6023 |
| 0.6529 | 38.0 | 950 | 0.5998 |
| 0.6434 | 39.0 | 975 | 0.6023 |
| 0.645 | 40.0 | 1000 | 0.5976 |
| 0.64 | 41.0 | 1025 | 0.5987 |
| 0.6423 | 42.0 | 1050 | 0.5971 |
| 0.6439 | 43.0 | 1075 | 0.5940 |
| 0.6472 | 44.0 | 1100 | 0.5946 |
| 0.6459 | 45.0 | 1125 | 0.5965 |
| 0.6229 | 46.0 | 1150 | 0.5940 |
| 0.6414 | 47.0 | 1175 | 0.6111 |
| 0.6215 | 48.0 | 1200 | 0.5910 |
| 0.6375 | 49.0 | 1225 | 0.5928 |
| 0.6324 | 50.0 | 1250 | 0.6103 |
| 0.6212 | 51.0 | 1275 | 0.6075 |
| 0.6406 | 52.0 | 1300 | 0.5869 |
| 0.631 | 53.0 | 1325 | 0.5866 |
| 0.6227 | 54.0 | 1350 | 0.5833 |
| 0.6255 | 55.0 | 1375 | 0.5837 |
| 0.633 | 56.0 | 1400 | 0.5833 |
| 0.6224 | 57.0 | 1425 | 0.5822 |
| 0.628 | 58.0 | 1450 | 0.5858 |
| 0.62 | 59.0 | 1475 | 0.5827 |
| 0.6211 | 60.0 | 1500 | 0.5834 |
| 0.6236 | 61.0 | 1525 | 0.5794 |
| 0.6136 | 62.0 | 1550 | 0.5820 |
| 0.6132 | 63.0 | 1575 | 0.5800 |
| 0.6098 | 64.0 | 1600 | 0.5788 |
| 0.6167 | 65.0 | 1625 | 0.5785 |
| 0.6271 | 66.0 | 1650 | 0.5794 |
| 0.615 | 67.0 | 1675 | 0.5764 |
| 0.6143 | 68.0 | 1700 | 0.5789 |
| 0.6085 | 69.0 | 1725 | 0.5756 |
| 0.611 | 70.0 | 1750 | 0.5740 |
| 0.6161 | 71.0 | 1775 | 0.5730 |
| 0.5999 | 72.0 | 1800 | 0.5738 |
| 0.6194 | 73.0 | 1825 | 0.5753 |
| 0.6221 | 74.0 | 1850 | 0.5731 |
| 0.6061 | 75.0 | 1875 | 0.5738 |
| 0.6038 | 76.0 | 1900 | 0.5745 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.6.1
- Tokenizers 0.14.1