--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: SChem5Labels-google-t5-v1_1-large-intra_model-frequency-human_annots_str results: [] --- # SChem5Labels-google-t5-v1_1-large-intra_model-frequency-human_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 20.7337 | 1.0 | 25 | 23.6105 | | 19.8181 | 2.0 | 50 | 21.7021 | | 18.5121 | 3.0 | 75 | 18.6451 | | 16.2008 | 4.0 | 100 | 12.8515 | | 14.7585 | 5.0 | 125 | 10.1513 | | 11.4985 | 6.0 | 150 | 9.3063 | | 10.0012 | 7.0 | 175 | 9.0999 | | 8.6447 | 8.0 | 200 | 8.8536 | | 8.3766 | 9.0 | 225 | 8.7377 | | 8.1231 | 10.0 | 250 | 8.6065 | | 8.0504 | 11.0 | 275 | 8.4953 | | 8.0051 | 12.0 | 300 | 8.3466 | | 7.7615 | 13.0 | 325 | 8.1101 | | 7.6344 | 14.0 | 350 | 7.8434 | | 7.3869 | 15.0 | 375 | 7.6118 | | 7.3158 | 16.0 | 400 | 7.4364 | | 7.1667 | 17.0 | 425 | 7.3245 | | 6.988 | 18.0 | 450 | 7.2732 | | 7.0234 | 19.0 | 475 | 7.2125 | | 6.9602 | 20.0 | 500 | 7.1699 | | 6.8268 | 21.0 | 525 | 7.1251 | | 6.8999 | 22.0 | 550 | 7.0695 | | 6.3358 | 23.0 | 575 | 0.6967 | | 0.86 | 24.0 | 600 | 0.6708 | | 0.7148 | 25.0 | 625 | 0.6347 | | 0.674 | 26.0 | 650 | 0.6297 | | 0.6683 | 27.0 | 675 | 0.6234 | | 0.6711 | 28.0 | 700 | 0.6214 | | 0.6773 | 29.0 | 725 | 0.6170 | | 0.6596 | 30.0 | 750 | 0.6162 | | 0.6812 | 31.0 | 775 | 0.6207 | | 0.6813 | 32.0 | 800 | 0.6121 | | 0.6655 | 33.0 | 825 | 0.6147 | | 0.653 | 34.0 | 850 | 0.6112 | | 0.651 | 35.0 | 875 | 0.6082 | | 0.6659 | 36.0 | 900 | 0.6075 | | 0.6639 | 37.0 | 925 | 0.6023 | | 0.6529 | 38.0 | 950 | 0.5998 | | 0.6434 | 39.0 | 975 | 0.6023 | | 0.645 | 40.0 | 1000 | 0.5976 | | 0.64 | 41.0 | 1025 | 0.5987 | | 0.6423 | 42.0 | 1050 | 0.5971 | | 0.6439 | 43.0 | 1075 | 0.5940 | | 0.6472 | 44.0 | 1100 | 0.5946 | | 0.6459 | 45.0 | 1125 | 0.5965 | | 0.6229 | 46.0 | 1150 | 0.5940 | | 0.6414 | 47.0 | 1175 | 0.6111 | | 0.6215 | 48.0 | 1200 | 0.5910 | | 0.6375 | 49.0 | 1225 | 0.5928 | | 0.6324 | 50.0 | 1250 | 0.6103 | | 0.6212 | 51.0 | 1275 | 0.6075 | | 0.6406 | 52.0 | 1300 | 0.5869 | | 0.631 | 53.0 | 1325 | 0.5866 | | 0.6227 | 54.0 | 1350 | 0.5833 | | 0.6255 | 55.0 | 1375 | 0.5837 | | 0.633 | 56.0 | 1400 | 0.5833 | | 0.6224 | 57.0 | 1425 | 0.5822 | | 0.628 | 58.0 | 1450 | 0.5858 | | 0.62 | 59.0 | 1475 | 0.5827 | | 0.6211 | 60.0 | 1500 | 0.5834 | | 0.6236 | 61.0 | 1525 | 0.5794 | | 0.6136 | 62.0 | 1550 | 0.5820 | | 0.6132 | 63.0 | 1575 | 0.5800 | | 0.6098 | 64.0 | 1600 | 0.5788 | | 0.6167 | 65.0 | 1625 | 0.5785 | | 0.6271 | 66.0 | 1650 | 0.5794 | | 0.615 | 67.0 | 1675 | 0.5764 | | 0.6143 | 68.0 | 1700 | 0.5789 | | 0.6085 | 69.0 | 1725 | 0.5756 | | 0.611 | 70.0 | 1750 | 0.5740 | | 0.6161 | 71.0 | 1775 | 0.5730 | | 0.5999 | 72.0 | 1800 | 0.5738 | | 0.6194 | 73.0 | 1825 | 0.5753 | | 0.6221 | 74.0 | 1850 | 0.5731 | | 0.6061 | 75.0 | 1875 | 0.5738 | | 0.6038 | 76.0 | 1900 | 0.5745 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.6.1 - Tokenizers 0.14.1