Hugging Face Internal Testing Organization

company
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

hf-internal-testing's activity

Xenova 
posted an update 2 days ago
tomaarsen 
posted an update 3 days ago
view post
Post
2344
That didn't take long! Nomic AI has finetuned the new ModernBERT-base encoder model into a strong embedding model for search, classification, clustering and more!

Details:
🤖 Based on ModernBERT-base with 149M parameters.
📊 Outperforms both nomic-embed-text-v1 and nomic-embed-text-v1.5 on MTEB!
🏎️ Immediate FA2 and unpacking support for super efficient inference.
🪆 Trained with Matryoshka support, i.e. 2 valid output dimensionalities: 768 and 256.
➡️ Maximum sequence length of 8192 tokens!
2️⃣ Trained in 2 stages: unsupervised contrastive data -> high quality labeled datasets.
➕ Integrated in Sentence Transformers, Transformers, LangChain, LlamaIndex, Haystack, etc.
🏛️ Apache 2.0 licensed: fully commercially permissible

Try it out here: nomic-ai/modernbert-embed-base

Very nice work by Zach Nussbaum and colleagues at Nomic AI.
lewtun 
posted an update 5 days ago
view post
Post
1863
This paper ( HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs (2412.18925)) has a really interesting recipe for inducing o1-like behaviour in Llama models:

* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting.
* Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases)
* Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1
* Use the resulting data for SFT & RL
* Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.

Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
  • 1 reply
·
sayakpaul 
posted an update 11 days ago
anton-l 
posted an update 15 days ago
view post
Post
2104
Introducing 📐𝐅𝐢𝐧𝐞𝐌𝐚𝐭𝐡: the best public math pre-training dataset with 50B+ tokens!
HuggingFaceTB/finemath

Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.

We build the dataset by:
🛠️ carefully extracting math data from Common Crawl;
🔎 iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.

We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.

We hope this helps advance the performance of LLMs on math and reasoning! 🚀
We’re also releasing all the ablation models as well as the evaluation code.

HuggingFaceTB/finemath-6763fb8f71b6439b653482c2
Xenova 
posted an update 16 days ago
view post
Post
2694
Introducing Moonshine Web: real-time speech recognition running 100% locally in your browser!
🚀 Faster and more accurate than Whisper
🔒 Privacy-focused (no data leaves your device)
⚡️ WebGPU accelerated (w/ WASM fallback)
🔥 Powered by ONNX Runtime Web and Transformers.js

Demo: webml-community/moonshine-web
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/moonshine-web
·
sayakpaul 
posted an update 17 days ago
view post
Post
1712
In the past seven days, the Diffusers team has shipped:

1. Two new video models
2. One new image model
3. Two new quantization backends
4. Three new fine-tuning scripts
5. Multiple fixes and library QoL improvements

Coffee on me if someone can guess 1 - 4 correctly.
  • 1 reply
·
lewtun 
posted an update 18 days ago
view post
Post
6630
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥

How? By combining step-wise reward models with tree search algorithms :)

We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"

We're open sourcing the full recipe and sharing a detailed blog post.

In our blog post we cover:

📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.

🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.

🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM

Here's the links:

- Blog post: HuggingFaceH4/blogpost-scaling-test-time-compute

- Code: https://github.com/huggingface/search-and-learn

Enjoy!
  • 2 replies
·
lhoestq 
posted an update 22 days ago
view post
Post
1655
Made a HF Dataset editor a la gg sheets here: lhoestq/dataset-spreadsheets

With Dataset Spreadsheets:
✏️ Edit datasets in the UI
🔗 Share link with collaborators
🐍 Use locally in DuckDB or Python

Available for the 100,000+ parquet datasets on HF :)
Narsil 
posted an update 23 days ago
view post
Post
1025
Performance leap: TGI v3 is out. Processes 3x more tokens, 13x faster than vLLM on long prompts. Zero config !



3x more tokens.

By reducing our memory footprint, we’re able to ingest many more tokens and more dynamically than before. A single L4 (24GB) can handle 30k tokens on llama 3.1-8B, while vLLM gets barely 10k. A lot of work went into reducing the footprint of the runtime and its effect are best seen on smaller constrained environments.
13x faster

On long prompts (200k+ tokens) conversation replies take 27.5s in vLLM, while it takes only 2s in TGI. How so ? We keep the initial conversation around, so when a new reply comes in, we can answer almost instantly. The overhead of the lookup is ~5us. Thanks @Dani ël de Kok for the beast data structure.
Zero config

That’s it. Remove all the flags your are using and you’re likely to get the best performance. By evaluating the hardware and model, TGI carefully selects automatic values to give best performance. In production, we don’t have any flags anymore in our deployments. We kept all existing flags around, they may come in handy in niche scenarios.

Read more: https://huggingface.co/docs/text-generation-inference/conceptual/chunking
sayakpaul 
posted an update 25 days ago
view post
Post
2069
Introducing a high-quality open-preference dataset to further this line of research for image generation.

Despite being such an inseparable component for modern image generation, open preference datasets are a rarity!

So, we decided to work on one with the community!

Check it out here:
https://huggingface.co/blog/image-preferences
  • 7 replies
·
sayakpaul 
posted an update 26 days ago
view post
Post
2114
The Control family of Flux from @black-forest-labs should be discussed more!

It enables structural controls like ControlNets while being significantly less expensive to run!

So, we're working on a Control LoRA training script 🤗

It's still WIP, so go easy:
https://github.com/huggingface/diffusers/pull/10130
Xenova 
posted an update 26 days ago
view post
Post
2961
Introducing TTS WebGPU: The first ever text-to-speech web app built with WebGPU acceleration! 🔥 High-quality and natural speech generation that runs 100% locally in your browser, powered by OuteTTS and Transformers.js. 🤗 Try it out yourself!

Demo: webml-community/text-to-speech-webgpu
Source code: https://github.com/huggingface/transformers.js-examples/tree/main/text-to-speech-webgpu
Model: onnx-community/OuteTTS-0.2-500M (ONNX), OuteAI/OuteTTS-0.2-500M (PyTorch)
sayakpaul 
posted an update about 1 month ago