|
--- |
|
license: apache-2.0 |
|
library_name: transformers.js |
|
base_model: Qwen/Qwen2-VL-2B-Instruct |
|
--- |
|
|
|
https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example:** Image+text to text |
|
|
|
```js |
|
import { AutoProcessor, Qwen2VLForConditionalGeneration, RawImage } from "@huggingface/transformers"; |
|
|
|
// Load processor and model |
|
const model_id = "onnx-community/Qwen2-VL-2B-Instruct"; |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
const model = await Qwen2VLForConditionalGeneration.from_pretrained(model_id); |
|
|
|
// Prepare inputs |
|
const url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"; |
|
const image = await (await RawImage.read(url)).resize(448, 448); |
|
const conversation = [ |
|
{ |
|
role: "user", |
|
content: [ |
|
{ type: "image" }, |
|
{ type: "text", text: "Describe this image." }, |
|
], |
|
}, |
|
]; |
|
const text = processor.apply_chat_template(conversation, { add_generation_prompt: true }); |
|
const inputs = await processor(text, image); |
|
|
|
// Perform inference |
|
const outputs = await model.generate({ |
|
...inputs, |
|
max_new_tokens: 128, |
|
}); |
|
|
|
// Decode output |
|
const decoded = processor.batch_decode( |
|
outputs.slice(null, [inputs.input_ids.dims.at(-1), null]), |
|
{ skip_special_tokens: true }, |
|
); |
|
console.log(decoded[0]); |
|
// The image depicts a serene beach scene with a woman and a dog. The woman is sitting on the sand, wearing a plaid shirt, and appears to be engaged in a playful interaction with the dog. The dog, which is a large breed, is sitting on its hind legs and appears to be reaching out to the woman, possibly to give her a high-five or a paw. The background shows the ocean with gentle waves, and the sky is clear, suggesting it might be either sunrise or sunset. The overall atmosphere is calm and relaxed, capturing a moment of connection between the woman and the dog. |
|
``` |
|
|
|
## ONNX conversion script: |
|
First, install the following dependencies: |
|
```sh |
|
pip install --upgrade git+https://github.com/huggingface/transformers.git onnx==1.17.0 onnxruntime==1.20.1 optimum==1.23.3 onnxslim==0.1.42 |
|
``` |
|
|
|
```py |
|
import os |
|
import torch |
|
from transformers import ( |
|
AutoProcessor, |
|
Qwen2VLForConditionalGeneration, |
|
DynamicCache, |
|
) |
|
|
|
|
|
class PatchedQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration): |
|
def forward(self, *args): |
|
inputs_embeds, attention_mask, position_ids, *past_key_values_args = args |
|
|
|
# Convert past_key_values list to DynamicCache |
|
if len(past_key_values_args) == 0: |
|
past_key_values = None |
|
else: |
|
past_key_values = DynamicCache(self.config.num_hidden_layers) |
|
for i in range(self.config.num_hidden_layers): |
|
key = past_key_values_args.pop(0) |
|
value = past_key_values_args.pop(0) |
|
past_key_values.update(key_states=key, value_states=value, layer_idx=i) |
|
|
|
o = super().forward( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
flattened_past_key_values_outputs = { |
|
"logits": o.logits, |
|
} |
|
output_past_key_values: DynamicCache = o.past_key_values |
|
for i, (key, value) in enumerate( |
|
zip(output_past_key_values.key_cache, output_past_key_values.value_cache) |
|
): |
|
flattened_past_key_values_outputs[f"present.{i}.key"] = key |
|
flattened_past_key_values_outputs[f"present.{i}.value"] = value |
|
|
|
return flattened_past_key_values_outputs |
|
|
|
|
|
# Constants |
|
OUTPUT_FOLDER = "output" |
|
EMBEDDING_MODEL_NAME = "embed_tokens.onnx" |
|
TEXT_MODEL_NAME = "decoder_model_merged.onnx" |
|
VISION_MODEL_NAME = "vision_encoder.onnx" |
|
TEMP_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "temp") |
|
FINAL_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "onnx") |
|
|
|
|
|
# Load model and processor |
|
model_id = "Qwen/Qwen2-VL-2B-Instruct" |
|
model = PatchedQwen2VLForConditionalGeneration.from_pretrained(model_id).eval() |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
# Save model configs and processor |
|
model.config.save_pretrained(OUTPUT_FOLDER) |
|
model.generation_config.save_pretrained(OUTPUT_FOLDER) |
|
processor.save_pretrained(OUTPUT_FOLDER) |
|
os.makedirs(TEMP_MODEL_OUTPUT_FOLDER, exist_ok=True) |
|
|
|
|
|
# Configuration values |
|
## Text model |
|
text_config = model.config |
|
num_heads = text_config.num_attention_heads |
|
num_key_value_heads = text_config.num_key_value_heads |
|
head_dim = text_config.hidden_size // num_heads |
|
num_layers = text_config.num_hidden_layers |
|
hidden_size = text_config.hidden_size |
|
|
|
## Vision model |
|
vision_config = model.config.vision_config |
|
channel = vision_config.in_chans |
|
temporal_patch_size = vision_config.temporal_patch_size |
|
patch_size = vision_config.spatial_patch_size |
|
|
|
|
|
# Dummy input sizes |
|
grid_t, grid_h, grid_w = [1, 16, 16] |
|
batch_size = 1 |
|
sequence_length = 16 |
|
num_channels = 3 |
|
past_sequence_length = 0 |
|
|
|
image_batch_size = 1 # TODO: Add support for > 1 images |
|
assert image_batch_size == 1 |
|
|
|
|
|
# Dummy inputs |
|
## Embedding inputs |
|
input_ids = torch.randint( |
|
0, model.config.vocab_size, (batch_size, sequence_length), dtype=torch.int64 |
|
) |
|
|
|
## Text inputs |
|
dummy_past_key_values_kwargs = { |
|
f"past_key_values.{i}.{key}": torch.zeros( |
|
batch_size, |
|
num_key_value_heads, |
|
past_sequence_length, |
|
head_dim, |
|
dtype=torch.float32, |
|
) |
|
for i in range(num_layers) |
|
for key in ["key", "value"] |
|
} |
|
inputs_embeds = torch.ones( |
|
batch_size, sequence_length, hidden_size, dtype=torch.float32 |
|
) |
|
attention_mask = torch.ones(batch_size, sequence_length, dtype=torch.int64) |
|
position_ids = torch.ones(3, batch_size, sequence_length, dtype=torch.int64) |
|
|
|
## Vision inputs |
|
grid_thw = torch.tensor( |
|
[[grid_t, grid_h, grid_w]] * image_batch_size, dtype=torch.int64 |
|
) |
|
pixel_values = torch.randn( |
|
image_batch_size * grid_t * grid_h * grid_w, |
|
channel * temporal_patch_size * patch_size * patch_size, |
|
dtype=torch.float32, |
|
) |
|
|
|
|
|
# ONNX Exports |
|
## Embedding model |
|
embedding_inputs = dict(input_ids=input_ids) |
|
embedding_inputs_positional = tuple(embedding_inputs.values()) |
|
model.model.embed_tokens(*embedding_inputs_positional) # Test forward pass |
|
EMBED_TOKENS_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, EMBEDDING_MODEL_NAME) |
|
torch.onnx.export( |
|
model.model.embed_tokens, |
|
args=embedding_inputs_positional, |
|
f=EMBED_TOKENS_OUTPUT_PATH, |
|
export_params=True, |
|
opset_version=14, |
|
do_constant_folding=True, |
|
input_names=list(embedding_inputs.keys()), |
|
output_names=["inputs_embeds"], |
|
dynamic_axes={ |
|
"input_ids": {0: "batch_size", 1: "sequence_length"}, |
|
"inputs_embeds": {0: "batch_size", 1: "sequence_length"}, |
|
}, |
|
) |
|
|
|
## Text model |
|
text_inputs = dict( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
**dummy_past_key_values_kwargs, |
|
) |
|
text_inputs_positional = tuple(text_inputs.values()) |
|
text_outputs = model.forward(*text_inputs_positional) # Test forward pass |
|
TEXT_MODEL_OUTPUT_PATH=os.path.join(TEMP_MODEL_OUTPUT_FOLDER, TEXT_MODEL_NAME) |
|
torch.onnx.export( |
|
model, |
|
args=text_inputs_positional, |
|
f=TEXT_MODEL_OUTPUT_PATH, |
|
export_params=True, |
|
opset_version=14, |
|
do_constant_folding=True, |
|
input_names=list(text_inputs.keys()), |
|
output_names=["logits"] |
|
+ [f"present.{i}.{key}" for i in range(num_layers) for key in ["key", "value"]], |
|
dynamic_axes={ |
|
"inputs_embeds": {0: "batch_size", 1: "sequence_length"}, |
|
"attention_mask": {0: "batch_size", 1: "sequence_length"}, |
|
"position_ids": {1: "batch_size", 2: "sequence_length"}, |
|
**{ |
|
f"past_key_values.{i}.{key}": {0: "batch_size", 2: "past_sequence_length"} |
|
for i in range(num_layers) |
|
for key in ["key", "value"] |
|
}, |
|
"logits": {0: "batch_size", 1: "sequence_length"}, |
|
**{ |
|
f"present.{i}.{key}": {0: "batch_size", 2: "past_sequence_length + 1"} |
|
for i in range(num_layers) |
|
for key in ["key", "value"] |
|
}, |
|
}, |
|
) |
|
|
|
## Vision model |
|
vision_inputs = dict( |
|
pixel_values=pixel_values, |
|
grid_thw=grid_thw, |
|
) |
|
vision_inputs_positional = tuple(vision_inputs.values()) |
|
vision_outputs = model.visual.forward(*vision_inputs_positional) # Test forward pass |
|
VISION_ENCODER_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, VISION_MODEL_NAME) |
|
torch.onnx.export( |
|
model.visual, |
|
args=vision_inputs_positional, |
|
f=VISION_ENCODER_OUTPUT_PATH, |
|
export_params=True, |
|
opset_version=14, |
|
do_constant_folding=True, |
|
input_names=list(vision_inputs.keys()), |
|
output_names=["image_features"], |
|
dynamic_axes={ |
|
"pixel_values": { |
|
0: "batch_size * grid_t * grid_h * grid_w", |
|
1: "channel * temporal_patch_size * patch_size * patch_size", |
|
}, |
|
"grid_thw": {0: "batch_size"}, |
|
"image_features": {0: "batch_size * grid_t * grid_h * grid_w"}, |
|
}, |
|
) |
|
|
|
|
|
# Post-processing |
|
import onnx |
|
import onnxslim |
|
from optimum.onnx.graph_transformations import check_and_save_model |
|
|
|
os.makedirs(FINAL_MODEL_OUTPUT_FOLDER, exist_ok=True) |
|
for name in (EMBEDDING_MODEL_NAME, TEXT_MODEL_NAME, VISION_MODEL_NAME): |
|
temp_model_path = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, name) |
|
|
|
## Shape inference (especially needed by the vision encoder) |
|
onnx.shape_inference.infer_shapes_path(temp_model_path, check_type=True, strict_mode=True) |
|
|
|
## Attempt to optimize the model with onnxslim |
|
try: |
|
model = onnxslim.slim(temp_model_path) |
|
except Exception as e: |
|
print(f"Failed to slim {model}: {e}") |
|
model = onnx.load(temp_model_path) |
|
|
|
## Save model |
|
final_model_path = os.path.join(FINAL_MODEL_OUTPUT_FOLDER, name) |
|
check_and_save_model(model, final_model_path) |
|
|
|
## Cleanup |
|
import shutil |
|
shutil.rmtree(TEMP_MODEL_OUTPUT_FOLDER) |
|
``` |