File size: 10,193 Bytes
f2780c4 214aa9f f2780c4 214aa9f f2780c4 0bef5ca f2780c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
---
license: apache-2.0
library_name: transformers.js
base_model: Qwen/Qwen2-VL-2B-Instruct
---
https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Image+text to text
```js
import { AutoProcessor, Qwen2VLForConditionalGeneration, RawImage } from "@huggingface/transformers";
// Load processor and model
const model_id = "onnx-community/Qwen2-VL-2B-Instruct";
const processor = await AutoProcessor.from_pretrained(model_id);
const model = await Qwen2VLForConditionalGeneration.from_pretrained(model_id);
// Prepare inputs
const url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg";
const image = await (await RawImage.read(url)).resize(448, 448);
const conversation = [
{
role: "user",
content: [
{ type: "image" },
{ type: "text", text: "Describe this image." },
],
},
];
const text = processor.apply_chat_template(conversation, { add_generation_prompt: true });
const inputs = await processor(text, image);
// Perform inference
const outputs = await model.generate({
...inputs,
max_new_tokens: 128,
});
// Decode output
const decoded = processor.batch_decode(
outputs.slice(null, [inputs.input_ids.dims.at(-1), null]),
{ skip_special_tokens: true },
);
console.log(decoded[0]);
// The image depicts a serene beach scene with a woman and a dog. The woman is sitting on the sand, wearing a plaid shirt, and appears to be engaged in a playful interaction with the dog. The dog, which is a large breed, is sitting on its hind legs and appears to be reaching out to the woman, possibly to give her a high-five or a paw. The background shows the ocean with gentle waves, and the sky is clear, suggesting it might be either sunrise or sunset. The overall atmosphere is calm and relaxed, capturing a moment of connection between the woman and the dog.
```
## ONNX conversion script:
First, install the following dependencies:
```sh
pip install --upgrade git+https://github.com/huggingface/transformers.git onnx==1.17.0 onnxruntime==1.20.1 optimum==1.23.3 onnxslim==0.1.42
```
```py
import os
import torch
from transformers import (
AutoProcessor,
Qwen2VLForConditionalGeneration,
DynamicCache,
)
class PatchedQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
def forward(self, *args):
inputs_embeds, attention_mask, position_ids, *past_key_values_args = args
# Convert past_key_values list to DynamicCache
if len(past_key_values_args) == 0:
past_key_values = None
else:
past_key_values = DynamicCache(self.config.num_hidden_layers)
for i in range(self.config.num_hidden_layers):
key = past_key_values_args.pop(0)
value = past_key_values_args.pop(0)
past_key_values.update(key_states=key, value_states=value, layer_idx=i)
o = super().forward(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
)
flattened_past_key_values_outputs = {
"logits": o.logits,
}
output_past_key_values: DynamicCache = o.past_key_values
for i, (key, value) in enumerate(
zip(output_past_key_values.key_cache, output_past_key_values.value_cache)
):
flattened_past_key_values_outputs[f"present.{i}.key"] = key
flattened_past_key_values_outputs[f"present.{i}.value"] = value
return flattened_past_key_values_outputs
# Constants
OUTPUT_FOLDER = "output"
EMBEDDING_MODEL_NAME = "embed_tokens.onnx"
TEXT_MODEL_NAME = "decoder_model_merged.onnx"
VISION_MODEL_NAME = "vision_encoder.onnx"
TEMP_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "temp")
FINAL_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "onnx")
# Load model and processor
model_id = "Qwen/Qwen2-VL-2B-Instruct"
model = PatchedQwen2VLForConditionalGeneration.from_pretrained(model_id).eval()
processor = AutoProcessor.from_pretrained(model_id)
# Save model configs and processor
model.config.save_pretrained(OUTPUT_FOLDER)
model.generation_config.save_pretrained(OUTPUT_FOLDER)
processor.save_pretrained(OUTPUT_FOLDER)
os.makedirs(TEMP_MODEL_OUTPUT_FOLDER, exist_ok=True)
# Configuration values
## Text model
text_config = model.config
num_heads = text_config.num_attention_heads
num_key_value_heads = text_config.num_key_value_heads
head_dim = text_config.hidden_size // num_heads
num_layers = text_config.num_hidden_layers
hidden_size = text_config.hidden_size
## Vision model
vision_config = model.config.vision_config
channel = vision_config.in_chans
temporal_patch_size = vision_config.temporal_patch_size
patch_size = vision_config.spatial_patch_size
# Dummy input sizes
grid_t, grid_h, grid_w = [1, 16, 16]
batch_size = 1
sequence_length = 16
num_channels = 3
past_sequence_length = 0
image_batch_size = 1 # TODO: Add support for > 1 images
assert image_batch_size == 1
# Dummy inputs
## Embedding inputs
input_ids = torch.randint(
0, model.config.vocab_size, (batch_size, sequence_length), dtype=torch.int64
)
## Text inputs
dummy_past_key_values_kwargs = {
f"past_key_values.{i}.{key}": torch.zeros(
batch_size,
num_key_value_heads,
past_sequence_length,
head_dim,
dtype=torch.float32,
)
for i in range(num_layers)
for key in ["key", "value"]
}
inputs_embeds = torch.ones(
batch_size, sequence_length, hidden_size, dtype=torch.float32
)
attention_mask = torch.ones(batch_size, sequence_length, dtype=torch.int64)
position_ids = torch.ones(3, batch_size, sequence_length, dtype=torch.int64)
## Vision inputs
grid_thw = torch.tensor(
[[grid_t, grid_h, grid_w]] * image_batch_size, dtype=torch.int64
)
pixel_values = torch.randn(
image_batch_size * grid_t * grid_h * grid_w,
channel * temporal_patch_size * patch_size * patch_size,
dtype=torch.float32,
)
# ONNX Exports
## Embedding model
embedding_inputs = dict(input_ids=input_ids)
embedding_inputs_positional = tuple(embedding_inputs.values())
model.model.embed_tokens(*embedding_inputs_positional) # Test forward pass
EMBED_TOKENS_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, EMBEDDING_MODEL_NAME)
torch.onnx.export(
model.model.embed_tokens,
args=embedding_inputs_positional,
f=EMBED_TOKENS_OUTPUT_PATH,
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=list(embedding_inputs.keys()),
output_names=["inputs_embeds"],
dynamic_axes={
"input_ids": {0: "batch_size", 1: "sequence_length"},
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
},
)
## Text model
text_inputs = dict(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
**dummy_past_key_values_kwargs,
)
text_inputs_positional = tuple(text_inputs.values())
text_outputs = model.forward(*text_inputs_positional) # Test forward pass
TEXT_MODEL_OUTPUT_PATH=os.path.join(TEMP_MODEL_OUTPUT_FOLDER, TEXT_MODEL_NAME)
torch.onnx.export(
model,
args=text_inputs_positional,
f=TEXT_MODEL_OUTPUT_PATH,
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=list(text_inputs.keys()),
output_names=["logits"]
+ [f"present.{i}.{key}" for i in range(num_layers) for key in ["key", "value"]],
dynamic_axes={
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
"attention_mask": {0: "batch_size", 1: "sequence_length"},
"position_ids": {1: "batch_size", 2: "sequence_length"},
**{
f"past_key_values.{i}.{key}": {0: "batch_size", 2: "past_sequence_length"}
for i in range(num_layers)
for key in ["key", "value"]
},
"logits": {0: "batch_size", 1: "sequence_length"},
**{
f"present.{i}.{key}": {0: "batch_size", 2: "past_sequence_length + 1"}
for i in range(num_layers)
for key in ["key", "value"]
},
},
)
## Vision model
vision_inputs = dict(
pixel_values=pixel_values,
grid_thw=grid_thw,
)
vision_inputs_positional = tuple(vision_inputs.values())
vision_outputs = model.visual.forward(*vision_inputs_positional) # Test forward pass
VISION_ENCODER_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, VISION_MODEL_NAME)
torch.onnx.export(
model.visual,
args=vision_inputs_positional,
f=VISION_ENCODER_OUTPUT_PATH,
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=list(vision_inputs.keys()),
output_names=["image_features"],
dynamic_axes={
"pixel_values": {
0: "batch_size * grid_t * grid_h * grid_w",
1: "channel * temporal_patch_size * patch_size * patch_size",
},
"grid_thw": {0: "batch_size"},
"image_features": {0: "batch_size * grid_t * grid_h * grid_w"},
},
)
# Post-processing
import onnx
import onnxslim
from optimum.onnx.graph_transformations import check_and_save_model
os.makedirs(FINAL_MODEL_OUTPUT_FOLDER, exist_ok=True)
for name in (EMBEDDING_MODEL_NAME, TEXT_MODEL_NAME, VISION_MODEL_NAME):
temp_model_path = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, name)
## Shape inference (especially needed by the vision encoder)
onnx.shape_inference.infer_shapes_path(temp_model_path, check_type=True, strict_mode=True)
## Attempt to optimize the model with onnxslim
try:
model = onnxslim.slim(temp_model_path)
except Exception as e:
print(f"Failed to slim {model}: {e}")
model = onnx.load(temp_model_path)
## Save model
final_model_path = os.path.join(FINAL_MODEL_OUTPUT_FOLDER, name)
check_and_save_model(model, final_model_path)
## Cleanup
import shutil
shutil.rmtree(TEMP_MODEL_OUTPUT_FOLDER)
``` |