metadata
license: apache-2.0
model-index:
- name: mera-mix-4x7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.95
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.17
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.44
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 77.17
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 85.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.11
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B
name: Open LLM Leaderboard
New: mera-mix-4x7B GGUF
This is a repo for GGUF quants of mera-mix-4x7B. Currently it holds the FP16 and Q8_0 items only.
Original: Model mera-mix-4x7B
This is a mixture of experts (MoE) model that is half as large (4 experts instead of 8) as the Mixtral-8x7B while been comparable to it across different benchmarks. You can use it as a drop in replacement for your Mixtral-8x7B and get much faster inference.
mera-mix-4x7B achieves 76.37 on the openLLM eval v/s 72.7 by Mixtral-8x7B (as shown here).
You can try the model with the Mera Mixture Chat.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.91 |
AI2 Reasoning Challenge (25-Shot) | 72.95 |
HellaSwag (10-Shot) | 89.17 |
MMLU (5-Shot) | 64.44 |
TruthfulQA (0-shot) | 77.17 |
Winogrande (5-shot) | 85.64 |
GSM8k (5-shot) | 66.11 |