--- license: apache-2.0 model-index: - name: mera-mix-4x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.17 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.44 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.17 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meraGPT/mera-mix-4x7B name: Open LLM Leaderboard --- # New: mera-mix-4x7B GGUF This is a repo for GGUF quants of mera-mix-4x7B. Currently it holds the FP16 and Q8_0 items only. # Original: Model mera-mix-4x7B This is a mixture of experts (MoE) model that is half as large (4 experts instead of 8) as the [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) while been comparable to it across different benchmarks. You can use it as a drop in replacement for your Mixtral-8x7B and get much faster inference. mera-mix-4x7B achieves 76.37 on the openLLM eval v/s 72.7 by Mixtral-8x7B (as shown [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mistralai__Mixtral-8x7B-Instruct-v0.1)). You can try the model with the [Mera Mixture Chat](https://huggingface.co/spaces/meraGPT/mera-mixture-chat). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meraGPT__mera-mix-4x7B) | Metric |Value| |---------------------------------|----:| |Avg. |75.91| |AI2 Reasoning Challenge (25-Shot)|72.95| |HellaSwag (10-Shot) |89.17| |MMLU (5-Shot) |64.44| |TruthfulQA (0-shot) |77.17| |Winogrande (5-shot) |85.64| |GSM8k (5-shot) |66.11|