mrojas's picture
update model card README.md
e24e020
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - disease
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: spanish-disease-tagger
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: disease
          type: disease
          config: disease
          split: train
          args: disease
        metrics:
          - name: Precision
            type: precision
            value: 0.8385373870172556
          - name: Recall
            type: recall
            value: 0.8711054204011951
          - name: F1
            type: f1
            value: 0.8545111994975926
          - name: Accuracy
            type: accuracy
            value: 0.9487721041951381

spanish-disease-tagger

This model is a fine-tuned version of plncmm/roberta-clinical-wl-es on the disease dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1786
  • Precision: 0.8385
  • Recall: 0.8711
  • F1: 0.8545
  • Accuracy: 0.9488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2217 1.0 502 0.1698 0.8142 0.8587 0.8359 0.9437
0.1203 2.0 1004 0.1735 0.8513 0.8528 0.8520 0.9473
0.093 3.0 1506 0.1786 0.8385 0.8711 0.8545 0.9488

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2