--- license: apache-2.0 tags: - generated_from_trainer datasets: - disease metrics: - precision - recall - f1 - accuracy model-index: - name: spanish-disease-tagger results: - task: name: Token Classification type: token-classification dataset: name: disease type: disease config: disease split: train args: disease metrics: - name: Precision type: precision value: 0.8385373870172556 - name: Recall type: recall value: 0.8711054204011951 - name: F1 type: f1 value: 0.8545111994975926 - name: Accuracy type: accuracy value: 0.9487721041951381 --- # spanish-disease-tagger This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the disease dataset. It achieves the following results on the evaluation set: - Loss: 0.1786 - Precision: 0.8385 - Recall: 0.8711 - F1: 0.8545 - Accuracy: 0.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2217 | 1.0 | 502 | 0.1698 | 0.8142 | 0.8587 | 0.8359 | 0.9437 | | 0.1203 | 2.0 | 1004 | 0.1735 | 0.8513 | 0.8528 | 0.8520 | 0.9473 | | 0.093 | 3.0 | 1506 | 0.1786 | 0.8385 | 0.8711 | 0.8545 | 0.9488 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2