metadata
license: llama3.1
library_name: transformers
tags:
- abliterated
- uncensored
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model-index:
- name: Meta-Llama-3.1-8B-Instruct-abliterated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 73.29
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.13
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.42
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.89
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.21
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.81
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
name: Open LLM Leaderboard
🦙 Meta-Llama-3.1-8B-Instruct-abliterated
This is an uncensored version of Llama 3.1 8B Instruct created with abliteration (see this article to know more about it).
Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models.
⚡️ Quantization
Thanks to ZeroWw and Apel-sin for the quants.
- New GGUF: https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF
- ZeroWw GGUF: https://huggingface.co/ZeroWw/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF
- EXL2: https://huggingface.co/Apel-sin/llama-3.1-8B-abliterated-exl2
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 23.13 |
IFEval (0-Shot) | 73.29 |
BBH (3-Shot) | 27.13 |
MATH Lvl 5 (4-Shot) | 6.42 |
GPQA (0-shot) | 0.89 |
MuSR (0-shot) | 3.21 |
MMLU-PRO (5-shot) | 27.81 |