--- license: llama3.1 library_name: transformers tags: - abliterated - uncensored base_model: meta-llama/Meta-Llama-3.1-8B-Instruct model-index: - name: Meta-Llama-3.1-8B-Instruct-abliterated results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 73.29 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 27.13 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.42 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0.89 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 3.21 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.81 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard --- # 🦙 Meta-Llama-3.1-8B-Instruct-abliterated ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b8e2ba285851687028d395%2FAsTgL8VCgMHgobq4cr46b.png)
🦙 Llama 3.1 70B Instruct lorablated
This is an uncensored version of Llama 3.1 8B Instruct created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it). Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models. ## ⚡️ Quantization Thanks to ZeroWw and Apel-sin for the quants. * **New GGUF**: https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF * **ZeroWw GGUF**: https://huggingface.co/ZeroWw/Meta-Llama-3.1-8B-Instruct-abliterated-GGUF * **EXL2**: https://huggingface.co/Apel-sin/llama-3.1-8B-abliterated-exl2 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Meta-Llama-3.1-8B-Instruct-abliterated) | Metric |Value| |-------------------|----:| |Avg. |23.13| |IFEval (0-Shot) |73.29| |BBH (3-Shot) |27.13| |MATH Lvl 5 (4-Shot)| 6.42| |GPQA (0-shot) | 0.89| |MuSR (0-shot) | 3.21| |MMLU-PRO (5-shot) |27.81|