metadata
base_model: meta-llama/Llama-3.2-3B
library_name: peft
license: llama3.2
tags:
- generated_from_trainer
model-index:
- name: model-out
results: []
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Llama-3.2-3B
load_in_8bit: false
load_in_4bit: true
strict: false
adapter: qlora
# Data config
dataset_prepared_path: data
chat_template: chatml
datasets:
- path: data/train.jsonl
ds_type: json
data_files:
- data/train.jsonl
conversation: alpaca
type: sharegpt
test_datasets:
- path: data/eval.jsonl
ds_type: json
# You need to specify a split. For "json" datasets the default split is called "train".
split: train
type: sharegpt
conversation: alpaca
data_files:
- data/eval.jsonl
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
model-out
This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1895
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6998 | 0.0741 | 1 | 0.6563 |
0.6841 | 0.2963 | 4 | 0.6447 |
0.4872 | 0.5926 | 8 | 0.4674 |
0.2431 | 0.8889 | 12 | 0.3015 |
0.2052 | 1.1667 | 16 | 0.2395 |
0.1989 | 1.4630 | 20 | 0.2020 |
0.2516 | 1.7593 | 24 | 0.1895 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1