Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: meta-llama/Llama-3.2-3B

load_in_8bit: false
load_in_4bit: true
strict: false
adapter: qlora

# Data config
dataset_prepared_path: data
chat_template: chatml
datasets:
  - path: data/train.jsonl
    ds_type: json
    data_files:
      - data/train.jsonl
    conversation: alpaca
    type: sharegpt

test_datasets:
  - path: data/eval.jsonl
    ds_type: json
    # You need to specify a split. For "json" datasets the default split is called "train".
    split: train
    type: sharegpt
    conversation: alpaca
    data_files:
      - data/eval.jsonl

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: "<|end_of_text|>"

model-out

This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.6998 0.0741 1 0.6563
0.6841 0.2963 4 0.6447
0.4872 0.5926 8 0.4674
0.2431 0.8889 12 0.3015
0.2052 1.1667 16 0.2395
0.1989 1.4630 20 0.2020
0.2516 1.7593 24 0.1895

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
GGUF
Model size
1.5B params
Architecture
llama
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mgfrantz/axolotl-test

Adapter
(51)
this model