metadata
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
library_name: peft
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: axolotl-test
results: []
See axolotl config
axolotl version: 0.4.1
# Model config
adapter: qlora
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
# base_model: meta-llama/Llama-3.2-3B
bf16: auto
# HF hub config (push to huggingface)
# requires HF_TOKEN api key to be set (👈🔑secrets)
hf_use_auth_token: true
hub_model_id: mgfrantz/axolotl-test
mlflow_experiment_name: axolotl-test
# # Data config
dataset_prepared_path: data
chat_template: chatml
datasets:
- path: data/train.jsonl
ds_type: json
data_files:
- data/train.jsonl
conversation: alpaca
type: sharegpt
test_datasets:
- path: data/eval.jsonl
ds_type: json
# You need to specify a split. For "json" datasets the default split is called "train".
split: train
type: sharegpt
conversation: alpaca
data_files:
- data/eval.jsonl
# Training config
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: false
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 8
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: paged_adamw_32bit
output_dir: ./outputs/qlora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
axolotl-test
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4338
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.4962 | 0.5714 | 1 | 2.4779 |
5.3564 | 1.0714 | 2 | 2.4760 |
4.3272 | 1.6429 | 3 | 2.4633 |
4.7348 | 2.1429 | 4 | 2.4338 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1