|
--- |
|
license: cc-by-sa-4.0 |
|
--- |
|
|
|
# **Synatra-7B-v0.3-Translation๐ง** |
|
![Synatra-7B-v0.3-Translation](./Synatra.png) |
|
|
|
## Support Me |
|
์๋ํธ๋ผ๋ ๊ฐ์ธ ํ๋ก์ ํธ๋ก, 1์ธ์ ์์์ผ๋ก ๊ฐ๋ฐ๋๊ณ ์์ต๋๋ค. ๋ชจ๋ธ์ด ๋ง์์ ๋์
จ๋ค๋ฉด ์ฝ๊ฐ์ ์ฐ๊ตฌ๋น ์ง์์ ์ด๋จ๊น์? |
|
[<img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy me a Coffee" width="217" height="50">](https://www.buymeacoffee.com/mwell) |
|
|
|
Wanna be a sponser? (Please) Contact me on Telegram **AlzarTakkarsen** |
|
|
|
# **Model Details** |
|
**Base Model** |
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |
|
|
|
**Datasets** |
|
[sharegpt_deepl_ko_translation](https://huggingface.co/datasets/squarelike/sharegpt_deepl_ko_translation) |
|
|
|
Filtered version of above dataset included. |
|
|
|
**Trained On** |
|
A100 80GB * 1 |
|
|
|
**Instruction format** |
|
|
|
It follows [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) format and **Alpaca(No-Input)** format. |
|
|
|
```python |
|
<|im_start|>system |
|
์ฃผ์ด์ง ๋ฌธ์ฅ์ ํ๊ตญ์ด๋ก ๋ฒ์ญํด๋ผ.<|im_end|> |
|
<|im_start|>user |
|
{instruction}<|im_end|> |
|
<|im_start|>assistant |
|
|
|
``` |
|
```python |
|
<|im_start|>system |
|
์ฃผ์ด์ง ๋ฌธ์ฅ์ ์์ด๋ก ๋ฒ์ญํด๋ผ.<|im_end|> |
|
<|im_start|>user |
|
{instruction}<|im_end|> |
|
<|im_start|>assistant |
|
|
|
``` |
|
|
|
|
|
## Ko-LLM-Leaderboard |
|
|
|
On Benchmarking... |
|
|
|
# **Implementation Code** |
|
|
|
Since, chat_template already contains insturction format above. |
|
You can use the code below. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-Translation") |
|
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-Translation") |
|
|
|
messages = [ |
|
{"role": "user", "content": "๋ฐ๋๋๋ ์๋ ํ์์์ด์ผ?"}, |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |