Synatra-7B-v0.3-Translation🐧

Synatra-7B-v0.3-Translation

Support Me

시나트라는 개인 프로젝트로, 1인의 자원으로 개발되고 있습니다. 모델이 마음에 드셨다면 약간의 연구비 지원은 어떨까요? Buy me a Coffee

Wanna be a sponser? (Please) Contact me on Telegram AlzarTakkarsen

Model Details

Base Model
mistralai/Mistral-7B-Instruct-v0.1

Datasets sharegpt_deepl_ko_translation

Filtered version of above dataset included.

Trained On
A100 80GB * 1

Instruction format

It follows ChatML format and Alpaca(No-Input) format.

<|im_start|>system
주어진 문장을 한국어로 번역해라.<|im_end|>
<|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant
<|im_start|>system
주어진 문장을 영어로 번역해라.<|im_end|>
<|im_start|>user
{instruction}<|im_end|>
<|im_start|>assistant

Ko-LLM-Leaderboard

On Benchmarking...

Implementation Code

Since, chat_template already contains insturction format above. You can use the code below.

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-Translation")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-Translation")

messages = [
    {"role": "user", "content": "바나나는 원래 하얀색이야?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Downloads last month
3,614
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maywell/Synatra-7B-v0.3-Translation

Finetunes
4 models
Quantizations
1 model

Spaces using maywell/Synatra-7B-v0.3-Translation 2