metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: Como alterar a senha única?
sentences:
- Siga as instruções em https://senha.ufes.br/site/alteraSenha.
- >-
Após a viagem, no prazo máximo de 05 (cinco) dias úteis de seu retorno é
necessário prestar contas da viagem realizada, mesmo que sem a
solicitação de diárias e passagens, sob pena de ficar impossibilitado de
receber novas concessões até que a pendência seja regularizada junto ao
SCDP.
Para isso, é necessário anexar ao processo os seguintes documentos:
1. Relatório de Viagem (preenchido e assinado);
2. Bilhete(s) de passagem(ns) aérea(s) (caso tenha solicitado passagens)
ou;
3. Declaração da empresa de transporte (quando for o caso) ou;
4. Recibo de check-in emitido digitalmente pela companhia aérea ou
declaração fornecida pela mesma (quando for o caso);
5. Certificado ou Declaração de participação.
Assim que anexados ao processo, este deve ser enviado à DCFN para baixa
no SCDP e posterior arquivamento.
Procedimentos, formulários, dúvidas e orientações estão disponíveis em:
https://gestaoadministrativa.saomateus.ufes.br/procedimentos-necessarios-para-solicitacao-de-diarias-e-passagens-aereas-no-ambito-do-ceunesufes
- Envie um e-mail para [email protected] para agendar o atendimento.
- source_sentence: Acesso a impressoras e computadores
sentences:
- Acesse o manual em https://drm.saomateus.ufes.br.
- >-
Informações sobre pagamento de notas fiscais a fornecedor entrar em
contato com a DCFN (Divisão de Contabilidade e Finanças)
E-mail institucional do setor: [email protected]
Telefones: 3312-1517 e 3312-1518
Demais informações acesse o site:
https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao
- >-
Para obter acesso a impressoras e computadores da UFES, envie uma
solicitação ao setor de TI, especificando os dispositivos necessários.
- source_sentence: Formatação de computador
sentences:
- >-
A formatação de computadores deve ser solicitada diretamente ao suporte
de TI, que avaliará a necessidade de backup e reinstalação dos sistemas
operacionais.
- Siga as orientações em https://senha.ufes.br/site/recuperaCredenciais.
- Acesse https://drm.saomateus.ufes.br/comissao-de-inventario.
- source_sentence: PC sem acesso ao sistema e rede do ceunes
sentences:
- >-
Problemas de acesso aos sistemas e rede do CEUNES podem estar
relacionados às configurações de rede. Entre em contato com o suporte de
TI em https://atendimento.ufes.br para verificar e resolver.
- >-
O cronograma está disponível no link
https://progep.ufes.br/exames-periodicos. A coleta dos exames
laboratoriais será realizada conforme cronograma, das 07h30min às 10:30,
na Sala de reuniões, prédio da SUGRAD. Esteja atento ao seu e-mail
institucional.
- >-
Para instalar uma impressora, solicite o serviço ao suporte de TI em
https://atendimento.ufes.br, que poderá auxiliar com a instalação e
configuração do equipamento.
- source_sentence: >-
Como atualizar o cadastro no Proaes em caso de alteração de
renda/composição familiar?
sentences:
- >-
Acesse https://drm.saomateus.ufes.br → Patrimônio → Agentes
Patrimoniais.
- >-
Envie um e-mail para [email protected] para agendar atendimento
social na DASAS.
- Acesse https://senha.ufes.br/site/recuperaCredenciais.
datasets:
- matunderstars/ufes-qa-data
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the train and test datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("matunderstars/ufes-qa-embedding-finetuned-v2.1")
# Run inference
sentences = [
'Como atualizar o cadastro no Proaes em caso de alteração de renda/composição familiar?',
'Envie um e-mail para [email protected] para agendar atendimento social na DASAS.',
'Acesse https://senha.ufes.br/site/recuperaCredenciais.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Datasets
train
- Dataset: train at 02bfedf
- Size: 100 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 100 samples:
question answer type string string details - min: 7 tokens
- mean: 18.3 tokens
- max: 45 tokens
- min: 14 tokens
- mean: 54.23 tokens
- max: 256 tokens
- Samples:
question answer Qual é o horário de funcionamento do setor DCFN (Divisão de Contabilidade e Finanças)?
Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao
Como incluir itens no catálogo de materiais?
Acesse https://compras.ufes.br/inclusao-de-produto-no-catalogo-de-materiais.
Fiz exames laboratoriais recentemente, devo coletar novamente?
Caso você já tenha realizado os mesmos exames laboratoriais nos últimos 6 meses, favor entrar em contato com o Setor de Enfermagem da DASAS pelo email [email protected] ou compareça presencialmente no Setor para maiores esclarecimentos.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
test
- Dataset: test at 02bfedf
- Size: 100 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 100 samples:
question answer type string string details - min: 9 tokens
- mean: 17.15 tokens
- max: 32 tokens
- min: 21 tokens
- mean: 54.6 tokens
- max: 219 tokens
- Samples:
question answer Como solicitar atendimento psicológico?
Envie um e-mail para [email protected] ou compareça presencialmente na DASAS para agendamento.
Como saber o dia da coleta de exames?
O cronograma está disponível no link https://progep.ufes.br/exames-periodicos. A coleta dos exames laboratoriais será realizada conforme cronograma, das 07h30min às 10:30, na Sala de reuniões, prédio da SUGRAD. Esteja atento ao seu e-mail institucional.
Como solicitar palestras/rodas de conversa sobre questões de cunho psicoemocional?
Envie um e-mail para [email protected] para solicitar participação/contribuição em evento.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 180warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 180max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
71.4286 | 500 | 0.1428 |
142.8571 | 1000 | 0.0001 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}