matunderstars commited on
Commit
d7ad29a
·
verified ·
1 Parent(s): e5ed927

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:200
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: Como alterar a senha única?
12
+ sentences:
13
+ - Siga as instruções em https://senha.ufes.br/site/alteraSenha.
14
+ - 'Após a viagem, no prazo máximo de 05 (cinco) dias úteis de seu retorno é necessário
15
+ prestar contas da viagem realizada, mesmo que sem a solicitação de diárias e passagens,
16
+ sob pena de ficar impossibilitado de receber novas concessões até que a pendência
17
+ seja regularizada junto ao SCDP.
18
+
19
+
20
+ Para isso, é necessário anexar ao processo os seguintes documentos:
21
+
22
+
23
+ 1. Relatório de Viagem (preenchido e assinado);
24
+
25
+ 2. Bilhete(s) de passagem(ns) aérea(s) (caso tenha solicitado passagens) ou;
26
+
27
+ 3. Declaração da empresa de transporte (quando for o caso) ou;
28
+
29
+ 4. Recibo de check-in emitido digitalmente pela companhia aérea ou declaração
30
+ fornecida pela mesma (quando for o caso);
31
+
32
+ 5. Certificado ou Declaração de participação.
33
+
34
+
35
+ Assim que anexados ao processo, este deve ser enviado à DCFN para baixa no SCDP
36
+ e posterior arquivamento.
37
+
38
+
39
+ Procedimentos, formulários, dúvidas e orientações estão disponíveis em:
40
+
41
+ https://gestaoadministrativa.saomateus.ufes.br/procedimentos-necessarios-para-solicitacao-de-diarias-e-passagens-aereas-no-ambito-do-ceunesufes'
42
+ - Envie um e-mail para [email protected] para agendar o atendimento.
43
+ - source_sentence: Acesso a impressoras e computadores
44
+ sentences:
45
+ - Acesse o manual em https://drm.saomateus.ufes.br.
46
+ - 'Informações sobre pagamento de notas fiscais a fornecedor entrar em contato com
47
+ a DCFN (Divisão de Contabilidade e Finanças)
48
+
49
+
50
+ E-mail institucional do setor: [email protected]
51
+
52
+
53
+ Telefones: 3312-1517 e 3312-1518
54
+
55
+
56
+ Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao'
57
+ - Para obter acesso a impressoras e computadores da UFES, envie uma solicitação
58
+ ao setor de TI, especificando os dispositivos necessários.
59
+ - source_sentence: Formatação de computador
60
+ sentences:
61
+ - A formatação de computadores deve ser solicitada diretamente ao suporte de TI,
62
+ que avaliará a necessidade de backup e reinstalação dos sistemas operacionais.
63
+ - Siga as orientações em https://senha.ufes.br/site/recuperaCredenciais.
64
+ - Acesse https://drm.saomateus.ufes.br/comissao-de-inventario.
65
+ - source_sentence: PC sem acesso ao sistema e rede do ceunes
66
+ sentences:
67
+ - Problemas de acesso aos sistemas e rede do CEUNES podem estar relacionados às
68
+ configurações de rede. Entre em contato com o suporte de TI em https://atendimento.ufes.br
69
+ para verificar e resolver.
70
+ - O cronograma está disponível no link https://progep.ufes.br/exames-periodicos.
71
+ A coleta dos exames laboratoriais será realizada conforme cronograma, das 07h30min
72
+ às 10:30, na Sala de reuniões, prédio da SUGRAD. Esteja atento ao seu e-mail institucional.
73
+ - Para instalar uma impressora, solicite o serviço ao suporte de TI em https://atendimento.ufes.br,
74
+ que poderá auxiliar com a instalação e configuração do equipamento.
75
+ - source_sentence: Como atualizar o cadastro no Proaes em caso de alteração de renda/composição
76
+ familiar?
77
+ sentences:
78
+ - Acesse https://drm.saomateus.ufes.br → Patrimônio → Agentes Patrimoniais.
79
+ - Envie um e-mail para [email protected] para agendar atendimento social na DASAS.
80
+ - Acesse https://senha.ufes.br/site/recuperaCredenciais.
81
+ datasets:
82
+ - matunderstars/ufes-qa-data
83
+ pipeline_tag: sentence-similarity
84
+ library_name: sentence-transformers
85
+ ---
86
+
87
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
88
+
89
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) and [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
90
+
91
+ ## Model Details
92
+
93
+ ### Model Description
94
+ - **Model Type:** Sentence Transformer
95
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
96
+ - **Maximum Sequence Length:** 256 tokens
97
+ - **Output Dimensionality:** 384 dimensions
98
+ - **Similarity Function:** Cosine Similarity
99
+ - **Training Datasets:**
100
+ - [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
101
+ - [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
102
+ <!-- - **Language:** Unknown -->
103
+ <!-- - **License:** Unknown -->
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
109
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
110
+
111
+ ### Full Model Architecture
112
+
113
+ ```
114
+ SentenceTransformer(
115
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
116
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
117
+ (2): Normalize()
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("matunderstars/ufes-qa-embedding-finetuned-v2.1")
137
+ # Run inference
138
+ sentences = [
139
+ 'Como atualizar o cadastro no Proaes em caso de alteração de renda/composição familiar?',
140
+ 'Envie um e-mail para [email protected] para agendar atendimento social na DASAS.',
141
+ 'Acesse https://senha.ufes.br/site/recuperaCredenciais.',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 384]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities.shape)
150
+ # [3, 3]
151
+ ```
152
+
153
+ <!--
154
+ ### Direct Usage (Transformers)
155
+
156
+ <details><summary>Click to see the direct usage in Transformers</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Downstream Usage (Sentence Transformers)
163
+
164
+ You can finetune this model on your own dataset.
165
+
166
+ <details><summary>Click to expand</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Out-of-Scope Use
173
+
174
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
175
+ -->
176
+
177
+ <!--
178
+ ## Bias, Risks and Limitations
179
+
180
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
181
+ -->
182
+
183
+ <!--
184
+ ### Recommendations
185
+
186
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
187
+ -->
188
+
189
+ ## Training Details
190
+
191
+ ### Training Datasets
192
+
193
+ #### train
194
+
195
+ * Dataset: [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d)
196
+ * Size: 100 training samples
197
+ * Columns: <code>question</code> and <code>answer</code>
198
+ * Approximate statistics based on the first 100 samples:
199
+ | | question | answer |
200
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
201
+ | type | string | string |
202
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.3 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 54.23 tokens</li><li>max: 256 tokens</li></ul> |
203
+ * Samples:
204
+ | question | answer |
205
+ |:----------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
206
+ | <code>Qual é o horário de funcionamento do setor DCFN (Divisão de Contabilidade e Finanças)?</code> | <code>Demais informações acesse o site: https://www.gestaoadministrativa.saomateus.ufes.br/apresentacao</code> |
207
+ | <code>Como incluir itens no catálogo de materiais?</code> | <code>Acesse https://compras.ufes.br/inclusao-de-produto-no-catalogo-de-materiais.</code> |
208
+ | <code>Fiz exames laboratoriais recentemente, devo coletar novamente?</code> | <code>Caso você já tenha realizado os mesmos exames laboratoriais nos últimos 6 meses, favor entrar em contato com o Setor de Enfermagem da DASAS pelo email [email protected] ou compareça presencialmente no Setor para maiores esclarecimentos.</code> |
209
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
210
+ ```json
211
+ {
212
+ "scale": 20.0,
213
+ "similarity_fct": "cos_sim"
214
+ }
215
+ ```
216
+
217
+ #### test
218
+
219
+ * Dataset: [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [02bfedf](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/02bfedf96441339120864b5df6b748c47d391b2d)
220
+ * Size: 100 training samples
221
+ * Columns: <code>question</code> and <code>answer</code>
222
+ * Approximate statistics based on the first 100 samples:
223
+ | | question | answer |
224
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
225
+ | type | string | string |
226
+ | details | <ul><li>min: 9 tokens</li><li>mean: 17.15 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 54.6 tokens</li><li>max: 219 tokens</li></ul> |
227
+ * Samples:
228
+ | question | answer |
229
+ |:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
230
+ | <code>Como solicitar atendimento psicológico?</code> | <code>Envie um e-mail para [email protected] ou compareça presencialmente na DASAS para agendamento.</code> |
231
+ | <code>Como saber o dia da coleta de exames?</code> | <code>O cronograma está disponível no link https://progep.ufes.br/exames-periodicos. A coleta dos exames laboratoriais será realizada conforme cronograma, das 07h30min às 10:30, na Sala de reuniões, prédio da SUGRAD. Esteja atento ao seu e-mail institucional.</code> |
232
+ | <code>Como solicitar palestras/rodas de conversa sobre questões de cunho psicoemocional?</code> | <code>Envie um e-mail para [email protected] para solicitar participação/contribuição em evento.</code> |
233
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
234
+ ```json
235
+ {
236
+ "scale": 20.0,
237
+ "similarity_fct": "cos_sim"
238
+ }
239
+ ```
240
+
241
+ ### Training Hyperparameters
242
+ #### Non-Default Hyperparameters
243
+
244
+ - `per_device_train_batch_size`: 16
245
+ - `per_device_eval_batch_size`: 16
246
+ - `num_train_epochs`: 180
247
+ - `warmup_ratio`: 0.1
248
+ - `fp16`: True
249
+ - `batch_sampler`: no_duplicates
250
+
251
+ #### All Hyperparameters
252
+ <details><summary>Click to expand</summary>
253
+
254
+ - `overwrite_output_dir`: False
255
+ - `do_predict`: False
256
+ - `eval_strategy`: no
257
+ - `prediction_loss_only`: True
258
+ - `per_device_train_batch_size`: 16
259
+ - `per_device_eval_batch_size`: 16
260
+ - `per_gpu_train_batch_size`: None
261
+ - `per_gpu_eval_batch_size`: None
262
+ - `gradient_accumulation_steps`: 1
263
+ - `eval_accumulation_steps`: None
264
+ - `torch_empty_cache_steps`: None
265
+ - `learning_rate`: 5e-05
266
+ - `weight_decay`: 0.0
267
+ - `adam_beta1`: 0.9
268
+ - `adam_beta2`: 0.999
269
+ - `adam_epsilon`: 1e-08
270
+ - `max_grad_norm`: 1.0
271
+ - `num_train_epochs`: 180
272
+ - `max_steps`: -1
273
+ - `lr_scheduler_type`: linear
274
+ - `lr_scheduler_kwargs`: {}
275
+ - `warmup_ratio`: 0.1
276
+ - `warmup_steps`: 0
277
+ - `log_level`: passive
278
+ - `log_level_replica`: warning
279
+ - `log_on_each_node`: True
280
+ - `logging_nan_inf_filter`: True
281
+ - `save_safetensors`: True
282
+ - `save_on_each_node`: False
283
+ - `save_only_model`: False
284
+ - `restore_callback_states_from_checkpoint`: False
285
+ - `no_cuda`: False
286
+ - `use_cpu`: False
287
+ - `use_mps_device`: False
288
+ - `seed`: 42
289
+ - `data_seed`: None
290
+ - `jit_mode_eval`: False
291
+ - `use_ipex`: False
292
+ - `bf16`: False
293
+ - `fp16`: True
294
+ - `fp16_opt_level`: O1
295
+ - `half_precision_backend`: auto
296
+ - `bf16_full_eval`: False
297
+ - `fp16_full_eval`: False
298
+ - `tf32`: None
299
+ - `local_rank`: 0
300
+ - `ddp_backend`: None
301
+ - `tpu_num_cores`: None
302
+ - `tpu_metrics_debug`: False
303
+ - `debug`: []
304
+ - `dataloader_drop_last`: False
305
+ - `dataloader_num_workers`: 0
306
+ - `dataloader_prefetch_factor`: None
307
+ - `past_index`: -1
308
+ - `disable_tqdm`: False
309
+ - `remove_unused_columns`: True
310
+ - `label_names`: None
311
+ - `load_best_model_at_end`: False
312
+ - `ignore_data_skip`: False
313
+ - `fsdp`: []
314
+ - `fsdp_min_num_params`: 0
315
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
316
+ - `fsdp_transformer_layer_cls_to_wrap`: None
317
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
318
+ - `deepspeed`: None
319
+ - `label_smoothing_factor`: 0.0
320
+ - `optim`: adamw_torch
321
+ - `optim_args`: None
322
+ - `adafactor`: False
323
+ - `group_by_length`: False
324
+ - `length_column_name`: length
325
+ - `ddp_find_unused_parameters`: None
326
+ - `ddp_bucket_cap_mb`: None
327
+ - `ddp_broadcast_buffers`: False
328
+ - `dataloader_pin_memory`: True
329
+ - `dataloader_persistent_workers`: False
330
+ - `skip_memory_metrics`: True
331
+ - `use_legacy_prediction_loop`: False
332
+ - `push_to_hub`: False
333
+ - `resume_from_checkpoint`: None
334
+ - `hub_model_id`: None
335
+ - `hub_strategy`: every_save
336
+ - `hub_private_repo`: False
337
+ - `hub_always_push`: False
338
+ - `gradient_checkpointing`: False
339
+ - `gradient_checkpointing_kwargs`: None
340
+ - `include_inputs_for_metrics`: False
341
+ - `include_for_metrics`: []
342
+ - `eval_do_concat_batches`: True
343
+ - `fp16_backend`: auto
344
+ - `push_to_hub_model_id`: None
345
+ - `push_to_hub_organization`: None
346
+ - `mp_parameters`:
347
+ - `auto_find_batch_size`: False
348
+ - `full_determinism`: False
349
+ - `torchdynamo`: None
350
+ - `ray_scope`: last
351
+ - `ddp_timeout`: 1800
352
+ - `torch_compile`: False
353
+ - `torch_compile_backend`: None
354
+ - `torch_compile_mode`: None
355
+ - `dispatch_batches`: None
356
+ - `split_batches`: None
357
+ - `include_tokens_per_second`: False
358
+ - `include_num_input_tokens_seen`: False
359
+ - `neftune_noise_alpha`: None
360
+ - `optim_target_modules`: None
361
+ - `batch_eval_metrics`: False
362
+ - `eval_on_start`: False
363
+ - `use_liger_kernel`: False
364
+ - `eval_use_gather_object`: False
365
+ - `average_tokens_across_devices`: False
366
+ - `prompts`: None
367
+ - `batch_sampler`: no_duplicates
368
+ - `multi_dataset_batch_sampler`: proportional
369
+
370
+ </details>
371
+
372
+ ### Training Logs
373
+ | Epoch | Step | Training Loss |
374
+ |:--------:|:----:|:-------------:|
375
+ | 71.4286 | 500 | 0.1428 |
376
+ | 142.8571 | 1000 | 0.0001 |
377
+
378
+
379
+ ### Framework Versions
380
+ - Python: 3.10.12
381
+ - Sentence Transformers: 3.3.1
382
+ - Transformers: 4.46.3
383
+ - PyTorch: 2.5.1+cu121
384
+ - Accelerate: 1.1.1
385
+ - Datasets: 3.2.0
386
+ - Tokenizers: 0.20.3
387
+
388
+ ## Citation
389
+
390
+ ### BibTeX
391
+
392
+ #### Sentence Transformers
393
+ ```bibtex
394
+ @inproceedings{reimers-2019-sentence-bert,
395
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
396
+ author = "Reimers, Nils and Gurevych, Iryna",
397
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
398
+ month = "11",
399
+ year = "2019",
400
+ publisher = "Association for Computational Linguistics",
401
+ url = "https://arxiv.org/abs/1908.10084",
402
+ }
403
+ ```
404
+
405
+ #### MultipleNegativesRankingLoss
406
+ ```bibtex
407
+ @misc{henderson2017efficient,
408
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
409
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
410
+ year={2017},
411
+ eprint={1705.00652},
412
+ archivePrefix={arXiv},
413
+ primaryClass={cs.CL}
414
+ }
415
+ ```
416
+
417
+ <!--
418
+ ## Glossary
419
+
420
+ *Clearly define terms in order to be accessible across audiences.*
421
+ -->
422
+
423
+ <!--
424
+ ## Model Card Authors
425
+
426
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
427
+ -->
428
+
429
+ <!--
430
+ ## Model Card Contact
431
+
432
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
433
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80e2a285e202765897c5a41ea75ce36b5650032890b9dc09289656689ca119ef
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff