library_name: transformers
language:
- en
metrics:
- accuracy
- f1
base_model:
- microsoft/deberta-base
Model Card for Model ID
Multi-Label Classification Model from the Homework#4 in the Natural Language Processing class of Hanyang University.
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Louis MARTYR
- Model type: Multi-Label Classification
- Language(s) (NLP): English
- Finetuned from model [optional]: microsoft/deberta-base
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
Epoch Training Loss Validation Loss Accuracy F1 Hamming
1 No log 0.071592 0.000000 0.000000 0.013605
2 No log 0.044421 0.003966 0.041837 0.013340
3 0.093600 0.019379 0.296761 0.695941 0.005845
4 0.093600 0.010774 0.805684 0.937958 0.001664
5 0.016600 0.007908 0.858559 0.952991 0.001344
6 0.016600 0.006812 0.867812 0.953844 0.001331
7 0.004000 0.006550 0.869134 0.953207 0.001344
8 0.004000 0.006433 0.874422 0.956688 0.001281
9 0.001900 0.006149 0.872439 0.955389 0.001295
10 0.001900 0.005600 0.888962 0.958396 0.001182
11 0.001900 0.005540 0.885658 0.959592 0.001169 --> Best model
12 0.001100 0.005667 0.884997 0.958190 0.001200
13 0.001100 0.005625 0.879048 0.959149 0.001187
14 0.000800 0.005998 0.881031 0.959557 0.001196
15 0.000800 0.005847 0.882353 0.957629 0.001227
16 0.000600 0.006074 0.877726 0.957484 0.001241
17 0.000600 0.006146 0.875083 0.956739 0.001272
18 0.000500 0.006010 0.884336 0.958790 0.001209
19 0.000500 0.006058 0.881031 0.958078 0.001223
20 0.000400 0.006077 0.881692 0.958275 0.001218
Results
Fine-tuned metrics:
{
'eval_loss': 0.0055404407903552055,
'eval_accuracy': 0.8856576338400529,
'eval_f1': 0.959591960051247,
'eval_hamming': 0.0011690069286141424,
'eval_runtime': 3.3212,
'eval_samples_per_second': 455.556,
'eval_steps_per_second': 3.613,
'epoch': 20.0
}
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]