--- library_name: transformers language: - en metrics: - accuracy - f1 base_model: - microsoft/deberta-base --- # Model Card for Model ID Multi-Label Classification Model from the Homework#4 in the Natural Language Processing class of Hanyang University. ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Louis MARTYR - **Model type:** Multi-Label Classification - **Language(s) (NLP):** English - **Finetuned from model [optional]:** microsoft/deberta-base ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics Epoch Training Loss Validation Loss Accuracy F1 Hamming 1 No log 0.071592 0.000000 0.000000 0.013605 2 No log 0.044421 0.003966 0.041837 0.013340 3 0.093600 0.019379 0.296761 0.695941 0.005845 4 0.093600 0.010774 0.805684 0.937958 0.001664 5 0.016600 0.007908 0.858559 0.952991 0.001344 6 0.016600 0.006812 0.867812 0.953844 0.001331 7 0.004000 0.006550 0.869134 0.953207 0.001344 8 0.004000 0.006433 0.874422 0.956688 0.001281 9 0.001900 0.006149 0.872439 0.955389 0.001295 10 0.001900 0.005600 0.888962 0.958396 0.001182 11 0.001900 0.005540 0.885658 0.959592 0.001169 --> Best model 12 0.001100 0.005667 0.884997 0.958190 0.001200 13 0.001100 0.005625 0.879048 0.959149 0.001187 14 0.000800 0.005998 0.881031 0.959557 0.001196 15 0.000800 0.005847 0.882353 0.957629 0.001227 16 0.000600 0.006074 0.877726 0.957484 0.001241 17 0.000600 0.006146 0.875083 0.956739 0.001272 18 0.000500 0.006010 0.884336 0.958790 0.001209 19 0.000500 0.006058 0.881031 0.958078 0.001223 20 0.000400 0.006077 0.881692 0.958275 0.001218 ### Results Fine-tuned metrics: { 'eval_loss': 0.0055404407903552055, 'eval_accuracy': 0.8856576338400529, 'eval_f1': 0.959591960051247, 'eval_hamming': 0.0011690069286141424, 'eval_runtime': 3.3212, 'eval_samples_per_second': 455.556, 'eval_steps_per_second': 3.613, 'epoch': 20.0 } #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]