leaderboard-pr-bot's picture
Adding Evaluation Results
3ecc00a verified
|
raw
history blame
4.76 kB
---
license: apache-2.0
datasets:
- lodrick-the-lafted/Hermes-100K
model-index:
- name: Hermes-Instruct-7B-100K
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.52
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.84
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.62
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.87
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.97
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
name: Open LLM Leaderboard
---
<img src=https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-100K/resolve/main/hermes-instruct.png>
# Hermes-Instruct-7B-v0.2
[Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) trained with 100K rows of [teknium/openhermes](https://huggingface.co/datasets/teknium/openhermes), in Alpaca format.
<br />
<br />
# Prompt Format
Both the default Mistral-Instruct tags and Alpaca are fine, so either:
```
<s>[INST] {sys_prompt} {instruction} [/INST]
```
or
```
{sys_prompt}
### Instruction:
{instruction}
### Response:
```
The tokenizer default is Alpaca this time around.
<br />
<br />
# Usage
```python
from transformers import AutoTokenizer
import transformers
import torch
model = "lodrick-the-lafted/Hermes-Instruct-7B-100K"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16},
)
messages = [{"role": "user", "content": "Give me a cooking recipe for an apple pie."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Hermes-Instruct-7B-100K)
| Metric |Value|
|---------------------------------|----:|
|Avg. |64.96|
|AI2 Reasoning Challenge (25-Shot)|61.52|
|HellaSwag (10-Shot) |82.84|
|MMLU (5-Shot) |60.95|
|TruthfulQA (0-shot) |63.62|
|Winogrande (5-shot) |76.87|
|GSM8k (5-shot) |43.97|