leaderboard-pr-bot's picture
Adding Evaluation Results
3ecc00a verified
|
raw
history blame
4.76 kB
metadata
license: apache-2.0
datasets:
  - lodrick-the-lafted/Hermes-100K
model-index:
  - name: Hermes-Instruct-7B-100K
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 61.52
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.84
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.95
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.62
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 76.87
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 43.97
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K
          name: Open LLM Leaderboard

Hermes-Instruct-7B-v0.2

Mistral-7B-Instruct-v0.2 trained with 100K rows of teknium/openhermes, in Alpaca format.



Prompt Format

Both the default Mistral-Instruct tags and Alpaca are fine, so either:

<s>[INST] {sys_prompt} {instruction} [/INST] 

or

{sys_prompt}

### Instruction:
{instruction}

### Response:

The tokenizer default is Alpaca this time around.



Usage

from transformers import AutoTokenizer
import transformers
import torch

model = "lodrick-the-lafted/Hermes-Instruct-7B-100K"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16},
)

messages = [{"role": "user", "content": "Give me a cooking recipe for an apple pie."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 64.96
AI2 Reasoning Challenge (25-Shot) 61.52
HellaSwag (10-Shot) 82.84
MMLU (5-Shot) 60.95
TruthfulQA (0-shot) 63.62
Winogrande (5-shot) 76.87
GSM8k (5-shot) 43.97