vicuna-13b-v1.1 / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
7c37f19 verified
|
raw
history blame
5.39 kB
---
inference: false
model-index:
- name: vicuna-13B-1.1-HF
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 52.73
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.94
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.08
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
---
**NOTE: New version available**
Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md).
<br>
# Vicuna Model Card
## Model Details
Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
- **Developed by:** [LMSYS](https://lmsys.org/)
- **Model type:** An auto-regressive language model based on the transformer architecture.
- **License:** Non-commercial license
- **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971).
### Model Sources
- **Repository:** https://github.com/lm-sys/FastChat
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
- **Paper:** https://arxiv.org/abs/2306.05685
- **Demo:** https://chat.lmsys.org/
## Uses
The primary use of Vicuna is research on large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
## Training Details
Vicuna v1.1 is fine-tuned from LLaMA with supervised instruction fine-tuning.
The training data is around 70K conversations collected from ShareGPT.com.
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
## Evaluation
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
## Difference between different versions of Vicuna
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
## Acknowledgement
Special thanks to [@TheBloke](https://huggingface.co/TheBloke) for hosting this merged version of weights earlier.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TheBloke__vicuna-13B-1.1-HF)
| Metric |Value|
|---------------------------------|----:|
|Avg. |53.29|
|AI2 Reasoning Challenge (25-Shot)|52.73|
|HellaSwag (10-Shot) |80.13|
|MMLU (5-Shot) |51.94|
|TruthfulQA (0-shot) |52.08|
|Winogrande (5-shot) |74.19|
|GSM8k (5-shot) | 8.64|