File size: 5,391 Bytes
5f296fe f07ba7b 7c37f19 5f296fe ac97512 f07ba7b 31c61d8 ac97512 f07ba7b ac97512 8c71dbe ac97512 8c71dbe ac97512 8c71dbe ac97512 8c71dbe ac97512 8c71dbe ac97512 8c71dbe ac97512 8c71dbe ac97512 8c71dbe ac97512 f07ba7b 1acf26f 7c37f19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
inference: false
model-index:
- name: vicuna-13B-1.1-HF
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 52.73
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.94
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.08
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheBloke/vicuna-13B-1.1-HF
name: Open LLM Leaderboard
---
**NOTE: New version available**
Please check out a newer version of the weights [here](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md).
<br>
# Vicuna Model Card
## Model Details
Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
- **Developed by:** [LMSYS](https://lmsys.org/)
- **Model type:** An auto-regressive language model based on the transformer architecture.
- **License:** Non-commercial license
- **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971).
### Model Sources
- **Repository:** https://github.com/lm-sys/FastChat
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
- **Paper:** https://arxiv.org/abs/2306.05685
- **Demo:** https://chat.lmsys.org/
## Uses
The primary use of Vicuna is research on large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
## Training Details
Vicuna v1.1 is fine-tuned from LLaMA with supervised instruction fine-tuning.
The training data is around 70K conversations collected from ShareGPT.com.
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
## Evaluation
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
## Difference between different versions of Vicuna
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
## Acknowledgement
Special thanks to [@TheBloke](https://huggingface.co/TheBloke) for hosting this merged version of weights earlier.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TheBloke__vicuna-13B-1.1-HF)
| Metric |Value|
|---------------------------------|----:|
|Avg. |53.29|
|AI2 Reasoning Challenge (25-Shot)|52.73|
|HellaSwag (10-Shot) |80.13|
|MMLU (5-Shot) |51.94|
|TruthfulQA (0-shot) |52.08|
|Winogrande (5-shot) |74.19|
|GSM8k (5-shot) | 8.64|
|