|
|
|
--- |
|
license: cc-by-4.0 |
|
metrics: |
|
- bleu4 |
|
- meteor |
|
- rouge-l |
|
- bertscore |
|
- moverscore |
|
language: fr |
|
datasets: |
|
- lmqg/qg_frquad |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- question generation |
|
widget: |
|
- text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc." |
|
example_title: "Question Generation Example 1" |
|
- text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945." |
|
example_title: "Question Generation Example 2" |
|
- text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938." |
|
example_title: "Question Generation Example 3" |
|
model-index: |
|
- name: lmqg/mt5-small-frquad |
|
results: |
|
- task: |
|
name: Text2text Generation |
|
type: text2text-generation |
|
dataset: |
|
name: lmqg/qg_frquad |
|
type: default |
|
args: default |
|
metrics: |
|
- name: BLEU4 |
|
type: bleu4 |
|
value: 0.0855433375613263 |
|
- name: ROUGE-L |
|
type: rouge-l |
|
value: 0.28563221971096636 |
|
- name: METEOR |
|
type: meteor |
|
value: 0.17511468784257161 |
|
- name: BERTScore |
|
type: bertscore |
|
value: 0.8070819788573244 |
|
- name: MoverScore |
|
type: moverscore |
|
value: 0.5650286067741268 |
|
--- |
|
|
|
# Model Card of `lmqg/mt5-small-frquad` |
|
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the |
|
[lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). |
|
|
|
|
|
Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)). |
|
|
|
``` |
|
|
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|
|
### Overview |
|
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) |
|
- **Language:** fr |
|
- **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default) |
|
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/) |
|
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) |
|
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) |
|
|
|
### Usage |
|
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) |
|
```python |
|
|
|
from lmqg import TransformersQG |
|
# initialize model |
|
model = TransformersQG(language='fr', model='lmqg/mt5-small-frquad') |
|
# model prediction |
|
question = model.generate_q(list_context=["Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc."], list_answer=["le Suprême Berger"]) |
|
|
|
``` |
|
|
|
- With `transformers` |
|
```python |
|
|
|
from transformers import pipeline |
|
# initialize model |
|
pipe = pipeline("text2text-generation", 'lmqg/mt5-small-frquad') |
|
# question generation |
|
question = pipe('Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.') |
|
|
|
``` |
|
|
|
## Evaluation Metrics |
|
|
|
|
|
### Metrics |
|
|
|
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link | |
|
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:| |
|
| [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | default | 0.086 | 0.286 | 0.175 | 0.807 | 0.565 | [link](https://huggingface.co/lmqg/mt5-small-frquad/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) | |
|
|
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during fine-tuning: |
|
- dataset_path: lmqg/qg_frquad |
|
- dataset_name: default |
|
- input_types: ['paragraph_answer'] |
|
- output_types: ['question'] |
|
- prefix_types: None |
|
- model: google/mt5-small |
|
- max_length: 512 |
|
- max_length_output: 32 |
|
- epoch: 14 |
|
- batch: 64 |
|
- lr: 0.001 |
|
- fp16: False |
|
- random_seed: 1 |
|
- gradient_accumulation_steps: 1 |
|
- label_smoothing: 0.15 |
|
|
|
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-frquad/raw/main/trainer_config.json). |
|
|
|
## Citation |
|
``` |
|
|
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|