File size: 5,602 Bytes
642e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abccf16
642e0ea
abccf16
642e0ea
abccf16
642e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4764be
642e0ea
f4764be
642e0ea
 
1cbeb6a
f4764be
 
 
 
1cbeb6a
f4764be
1cbeb6a
f4764be
 
 
 
 
 
 
 
 
 
642e0ea
 
 
 
 
 
1cbeb6a
642e0ea
 
1cbeb6a
642e0ea
 
1cbeb6a
 
 
 
 
 
 
642e0ea
1cbeb6a
 
642e0ea
1cbeb6a
 
 
 
abccf16
f4764be
642e0ea
 
 
 
 
 
 
 
 
abccf16
642e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cbeb6a
f4764be
 
1cbeb6a
f4764be
1cbeb6a
f4764be
 
 
 
 
 
 
 
1cbeb6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: fr
datasets:
- lmqg/qg_frquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc."
  example_title: "Question Generation Example 1" 
- text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945."
  example_title: "Question Generation Example 2" 
- text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/mt5-small-frquad
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_frquad
      type: default
      args: default
    metrics:
    - name: BLEU4
      type: bleu4
      value: 0.0855433375613263
    - name: ROUGE-L
      type: rouge-l
      value: 0.28563221971096636
    - name: METEOR
      type: meteor
      value: 0.17511468784257161
    - name: BERTScore
      type: bertscore
      value: 0.8070819788573244
    - name: MoverScore
      type: moverscore
      value: 0.5650286067741268
---

# Model Card of `lmqg/mt5-small-frquad`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the 
[lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)).

```

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```

### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)   
- **Language:** fr  
- **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python

from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='fr', model='lmqg/mt5-small-frquad')
# model prediction
question = model.generate_q(list_context=["Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc."], list_answer=["le Suprême Berger"])

```

- With `transformers`
```python

from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/mt5-small-frquad')
# question generation
question = pipe('Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.')

```

## Evaluation Metrics


### Metrics

| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | default | 0.086 | 0.286 | 0.175 | 0.807 | 0.565 | [link](https://huggingface.co/lmqg/mt5-small-frquad/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) | 




## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_frquad
 - dataset_name: default
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: google/mt5-small
 - max_length: 512
 - max_length_output: 32
 - epoch: 14
 - batch: 64
 - lr: 0.001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 1
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-frquad/raw/main/trainer_config.json).

## Citation
```

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```