LLaVA-NeXT-Video Model Card
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance:
Disclaimer: The team releasing LLaVa-NeXT-Video did not write a model card for this model so this model card has been written by the Hugging Face team.
π Model details
Model type: LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. The model is buit on top of LLaVa-NeXT by tuning on a mix of video and image data to achieves better video understanding capabilities. The videos were sampled uniformly to be 32 frames per clip. The model is a current SOTA among open-source models on VideoMME bench. Base LLM: lmsys/vicuna-7b-v1.5
Model date: LLaVA-Next-Video-7B was trained in April 2024.
Paper or resources for more information: https://github.com/LLaVA-VL/LLaVA-NeXT
π Training dataset
Image
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 500K academic-task-oriented VQA data mixture.
- 50K GPT-4V data mixture.
- 40K ShareGPT data.
Video
- 100K VideoChatGPT-Instruct.
π Evaluation dataset
A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark.
π How to use the model
First, make sure to have transformers >= 4.42.0
.
The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (USER: xxx\nASSISTANT:
) and add the token <image>
or <video>
to the location where you want to query images/videos:
Below is an example script to run generation in float16
precision on a GPU device:
import av
import torch
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf-DPO"
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
# define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image", "video")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Why is this video funny?"},
{"type": "video"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
container = av.open(video_path)
# sample uniformly 8 frames from the video, can sample more for longer videos
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
clip = read_video_pyav(container, indices)
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
Inference with images as inputs
To generate from images use the below code after loading the model as shown above:
import requests
from PIL import Image
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "nWhat are these?"},
{"type": "image"},
],
}
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs_image = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs_image, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
Inference with images and videos as inputs
To generate from images and videos in one generate use the below code after loading the model as shown above:
conversation_1 = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's the content of the image?"},
{"type": "image"},
],
}
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "text", "text": "Why is this video funny?"},
{"type": "video"},
],
},
]
prompt_1 = processor.apply_chat_template(conversation, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation, add_generation_prompt=True)
s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=100)
out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(out)
Model optimization
4-bit quantization through bitsandbytes
library
First make sure to install bitsandbytes
, pip install bitsandbytes
and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn
. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
π License
Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.
βοΈ Citation
If you find our paper and code useful in your research:
@misc{zhang2024llavanextvideo,
title={LLaVA-NeXT: A Strong Zero-shot Video Understanding Model},
url={https://llava-vl.github.io/blog/2024-04-30-llava-next-video/},
author={Zhang, Yuanhan and Li, Bo and Liu, haotian and Lee, Yong jae and Gui, Liangke and Fu, Di and Feng, Jiashi and Liu, Ziwei and Li, Chunyuan},
month={April},
year={2024}
}
@misc{liu2024llavanext,
title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
month={January},
year={2024}
}
- Downloads last month
- 430