LLaVA-NeXT-Video Model Card

Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: Open In Colab

Disclaimer: The team releasing LLaVa-NeXT-Video did not write a model card for this model so this model card has been written by the Hugging Face team.

πŸ“„ Model details

Model type: LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. The model is buit on top of LLaVa-NeXT by tuning on a mix of video and image data to achieves better video understanding capabilities. The videos were sampled uniformly to be 32 frames per clip. The model is a current SOTA among open-source models on VideoMME bench. Base LLM: lmsys/vicuna-7b-v1.5

llava_next_video_arch

Model date: LLaVA-Next-Video-7B was trained in April 2024.

Paper or resources for more information: https://github.com/LLaVA-VL/LLaVA-NeXT

πŸ“š Training dataset

Image

  • 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
  • 158K GPT-generated multimodal instruction-following data.
  • 500K academic-task-oriented VQA data mixture.
  • 50K GPT-4V data mixture.
  • 40K ShareGPT data.

Video

  • 100K VideoChatGPT-Instruct.

πŸ“Š Evaluation dataset

A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark.

πŸš€ How to use the model

First, make sure to have transformers >= 4.42.0. The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (USER: xxx\nASSISTANT:) and add the token <image> or <video> to the location where you want to query images/videos:

Below is an example script to run generation in float16 precision on a GPU device:

import av
import torch
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration

model_id = "llava-hf/LLaVA-NeXT-Video-34B-hf"

model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)

processor = LlavaNextVideoProcessor.from_pretrained(model_id)

def read_video_pyav(container, indices):
    '''
    Decode the video with PyAV decoder.
    Args:
        container (`av.container.input.InputContainer`): PyAV container.
        indices (`List[int]`): List of frame indices to decode.
    Returns:
        result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
    '''
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])


# define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image", "video") 
conversation = [
    {

        "role": "user",
        "content": [
            {"type": "text", "text": "Why is this video funny?"},
            {"type": "video"},
            ],
    },
]

prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
container = av.open(video_path)

# sample uniformly 8 frames from the video, can sample more for longer videos
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
clip = read_video_pyav(container, indices)
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)

output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))

Inference with images as inputs

To generate from images use the below code after loading the model as shown above:

import requests
from PIL import Image

conversation = [
    {
      "role": "user",
      "content": [
          {"type": "text", "text": "What are these?"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs_image = processor(text=prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))

Inference with images and videos as inputs

To generate from images and videos in one generate use the below code after loading the model as shown above:

conversation_1 = [
    {
      "role": "user",
      "content": [
          {"type": "text", "text": "What's the content of the image>"},
          {"type": "image"},
        ],
    }
]
conversation_2 = [
    {
      "role": "user",
      "content": [
          {"type": "text", "text": "Why is this video funny?"},
          {"type": "video"},
        ],
    },
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)

s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)

# Generate
generate_ids = model.generate(**inputs, max_new_tokens=100)
out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(out)

Model optimization

4-bit quantization through bitsandbytes library

First make sure to install bitsandbytes, pip install bitsandbytes and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:

model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   load_in_4bit=True
)

Use Flash-Attention 2 to further speed-up generation

First make sure to install flash-attn. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:

model = LlavaNextVideoForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   use_flash_attention_2=True
).to(0)

πŸ”’ License

Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.

✏️ Citation

If you find our paper and code useful in your research:

@misc{zhang2024llavanextvideo,
  title={LLaVA-NeXT: A Strong Zero-shot Video Understanding Model},
  url={https://llava-vl.github.io/blog/2024-04-30-llava-next-video/},
  author={Zhang, Yuanhan and Li, Bo and Liu, haotian and Lee, Yong jae and Gui, Liangke and Fu, Di and Feng, Jiashi and Liu, Ziwei and Li, Chunyuan},
  month={April},
  year={2024}
}
@misc{liu2024llavanext,
    title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
    url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
    author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
    month={January},
    year={2024}
}
Downloads last month
362
Safetensors
Model size
34.8B params
Tensor type
BF16
Β·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Collection including llava-hf/LLaVA-NeXT-Video-34B-hf