b2b_cnn_retrain / README.md
ka05ar's picture
End of training
ce3ffe1 verified
metadata
tags:
  - generated_from_trainer
model-index:
  - name: b2b_cnn_retrain
    results: []

b2b_cnn_retrain

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 8.0538
  • Rouge2 Precision: 0.0033
  • Rouge2 Recall: 0.0089
  • Rouge2 Fmeasure: 0.0048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
0.587 5.0 5 8.3529 0.0 0.0 0.0
0.4646 10.0 10 8.1390 0.0033 0.003 0.0031
0.4335 15.0 15 8.1031 0.0 0.0 0.0
0.3966 20.0 20 8.1701 0.0 0.0 0.0
0.3476 25.0 25 8.2264 0.0 0.0 0.0
0.2928 30.0 30 8.0323 0.0029 0.017 0.0049
0.244 35.0 35 7.9815 0.0024 0.0057 0.0034
0.2059 40.0 40 7.9555 0.0035 0.0114 0.0053
0.1791 45.0 45 8.0112 0.0046 0.0114 0.0066
0.1637 50.0 50 8.0538 0.0033 0.0089 0.0048

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1