b2b_cnn_retrain

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 8.0538
  • Rouge2 Precision: 0.0033
  • Rouge2 Recall: 0.0089
  • Rouge2 Fmeasure: 0.0048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
0.587 5.0 5 8.3529 0.0 0.0 0.0
0.4646 10.0 10 8.1390 0.0033 0.003 0.0031
0.4335 15.0 15 8.1031 0.0 0.0 0.0
0.3966 20.0 20 8.1701 0.0 0.0 0.0
0.3476 25.0 25 8.2264 0.0 0.0 0.0
0.2928 30.0 30 8.0323 0.0029 0.017 0.0049
0.244 35.0 35 7.9815 0.0024 0.0057 0.0034
0.2059 40.0 40 7.9555 0.0035 0.0114 0.0053
0.1791 45.0 45 8.0112 0.0046 0.0114 0.0066
0.1637 50.0 50 8.0538 0.0033 0.0089 0.0048

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
247M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.