jaypratap's picture
Model save
e9310f4 verified
metadata
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-pretraining-2024_04_02-atelectasis-classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7644320297951583

vit-pretraining-2024_04_02-atelectasis-classifier

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5020
  • Accuracy: 0.7644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6304 1.0 537 0.6342 0.6709
0.5931 2.0 1074 0.5669 0.7207
0.5027 3.0 1611 0.5397 0.7393
0.5659 4.0 2148 0.5341 0.7458
0.5115 5.0 2685 0.5433 0.7346
0.5108 6.0 3222 0.5454 0.7309
0.5187 7.0 3759 0.5136 0.7621
0.4435 8.0 4296 0.5057 0.7677
0.583 9.0 4833 0.5042 0.7584
0.5256 10.0 5370 0.5249 0.7495
0.4818 11.0 5907 0.5212 0.7481
0.5575 12.0 6444 0.5061 0.7481
0.3572 13.0 6981 0.5042 0.7602
0.489 14.0 7518 0.5004 0.7709
0.4773 15.0 8055 0.5074 0.7700
0.4577 16.0 8592 0.5054 0.7677
0.4619 17.0 9129 0.5021 0.7686
0.3865 18.0 9666 0.5074 0.7644
0.4889 19.0 10203 0.5113 0.7598
0.4637 20.0 10740 0.5020 0.7644

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2