vit-pretraining-2024_04_02-atelectasis-classifier

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5020
  • Accuracy: 0.7644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6304 1.0 537 0.6342 0.6709
0.5931 2.0 1074 0.5669 0.7207
0.5027 3.0 1611 0.5397 0.7393
0.5659 4.0 2148 0.5341 0.7458
0.5115 5.0 2685 0.5433 0.7346
0.5108 6.0 3222 0.5454 0.7309
0.5187 7.0 3759 0.5136 0.7621
0.4435 8.0 4296 0.5057 0.7677
0.583 9.0 4833 0.5042 0.7584
0.5256 10.0 5370 0.5249 0.7495
0.4818 11.0 5907 0.5212 0.7481
0.5575 12.0 6444 0.5061 0.7481
0.3572 13.0 6981 0.5042 0.7602
0.489 14.0 7518 0.5004 0.7709
0.4773 15.0 8055 0.5074 0.7700
0.4577 16.0 8592 0.5054 0.7677
0.4619 17.0 9129 0.5021 0.7686
0.3865 18.0 9666 0.5074 0.7644
0.4889 19.0 10203 0.5113 0.7598
0.4637 20.0 10740 0.5020 0.7644

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results