|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-pretraining-2024_03_25-classifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7648975791433892 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-pretraining-2024_03_25-classifier |
|
|
|
This model was trained from scratch on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5083 |
|
- Accuracy: 0.7649 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.2 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.6422 | 1.0 | 537 | 0.6409 | 0.6560 | |
|
| 0.5509 | 2.0 | 1074 | 0.5966 | 0.6862 | |
|
| 0.5123 | 3.0 | 1611 | 0.5743 | 0.7044 | |
|
| 0.5237 | 4.0 | 2148 | 0.5523 | 0.7188 | |
|
| 0.5589 | 5.0 | 2685 | 0.5352 | 0.7370 | |
|
| 0.5671 | 6.0 | 3222 | 0.5317 | 0.7407 | |
|
| 0.5247 | 7.0 | 3759 | 0.5228 | 0.7486 | |
|
| 0.4855 | 8.0 | 4296 | 0.5422 | 0.7374 | |
|
| 0.5122 | 9.0 | 4833 | 0.5195 | 0.7477 | |
|
| 0.5381 | 10.0 | 5370 | 0.5277 | 0.7398 | |
|
| 0.5465 | 11.0 | 5907 | 0.5213 | 0.7514 | |
|
| 0.4552 | 12.0 | 6444 | 0.5300 | 0.7495 | |
|
| 0.5188 | 13.0 | 6981 | 0.5107 | 0.7505 | |
|
| 0.5056 | 14.0 | 7518 | 0.5075 | 0.7579 | |
|
| 0.4759 | 15.0 | 8055 | 0.5077 | 0.7644 | |
|
| 0.6042 | 16.0 | 8592 | 0.5143 | 0.7602 | |
|
| 0.4002 | 17.0 | 9129 | 0.5184 | 0.7612 | |
|
| 0.4664 | 18.0 | 9666 | 0.5072 | 0.7630 | |
|
| 0.4653 | 19.0 | 10203 | 0.5103 | 0.7626 | |
|
| 0.4096 | 20.0 | 10740 | 0.5083 | 0.7649 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|