--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-pretraining-2024_03_25-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7648975791433892 --- # vit-pretraining-2024_03_25-classifier This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5083 - Accuracy: 0.7649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6422 | 1.0 | 537 | 0.6409 | 0.6560 | | 0.5509 | 2.0 | 1074 | 0.5966 | 0.6862 | | 0.5123 | 3.0 | 1611 | 0.5743 | 0.7044 | | 0.5237 | 4.0 | 2148 | 0.5523 | 0.7188 | | 0.5589 | 5.0 | 2685 | 0.5352 | 0.7370 | | 0.5671 | 6.0 | 3222 | 0.5317 | 0.7407 | | 0.5247 | 7.0 | 3759 | 0.5228 | 0.7486 | | 0.4855 | 8.0 | 4296 | 0.5422 | 0.7374 | | 0.5122 | 9.0 | 4833 | 0.5195 | 0.7477 | | 0.5381 | 10.0 | 5370 | 0.5277 | 0.7398 | | 0.5465 | 11.0 | 5907 | 0.5213 | 0.7514 | | 0.4552 | 12.0 | 6444 | 0.5300 | 0.7495 | | 0.5188 | 13.0 | 6981 | 0.5107 | 0.7505 | | 0.5056 | 14.0 | 7518 | 0.5075 | 0.7579 | | 0.4759 | 15.0 | 8055 | 0.5077 | 0.7644 | | 0.6042 | 16.0 | 8592 | 0.5143 | 0.7602 | | 0.4002 | 17.0 | 9129 | 0.5184 | 0.7612 | | 0.4664 | 18.0 | 9666 | 0.5072 | 0.7630 | | 0.4653 | 19.0 | 10203 | 0.5103 | 0.7626 | | 0.4096 | 20.0 | 10740 | 0.5083 | 0.7649 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2