|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-base-patch4-window7-224-20epochs-finetuned-memes |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.847758887171561 |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
type: custom |
|
name: custom |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.8504084378729573 |
|
name: F1 |
|
- type: precision |
|
value: 0.8519647060733512 |
|
name: Precision |
|
- type: recall |
|
value: 0.8523956723338485 |
|
name: Recall |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-base-patch4-window7-224-20epochs-finetuned-memes |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7090 |
|
- Accuracy: 0.8478 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00012 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.0238 | 0.99 | 40 | 0.9636 | 0.6445 | |
|
| 0.777 | 1.99 | 80 | 0.6591 | 0.7666 | |
|
| 0.4763 | 2.99 | 120 | 0.5381 | 0.8130 | |
|
| 0.3215 | 3.99 | 160 | 0.5244 | 0.8253 | |
|
| 0.2179 | 4.99 | 200 | 0.5123 | 0.8238 | |
|
| 0.1868 | 5.99 | 240 | 0.5052 | 0.8308 | |
|
| 0.154 | 6.99 | 280 | 0.5444 | 0.8338 | |
|
| 0.1166 | 7.99 | 320 | 0.6318 | 0.8238 | |
|
| 0.1099 | 8.99 | 360 | 0.5656 | 0.8338 | |
|
| 0.0925 | 9.99 | 400 | 0.6057 | 0.8338 | |
|
| 0.0779 | 10.99 | 440 | 0.5942 | 0.8393 | |
|
| 0.0629 | 11.99 | 480 | 0.6112 | 0.8400 | |
|
| 0.0742 | 12.99 | 520 | 0.6588 | 0.8331 | |
|
| 0.0752 | 13.99 | 560 | 0.6143 | 0.8408 | |
|
| 0.0577 | 14.99 | 600 | 0.6450 | 0.8516 | |
|
| 0.0589 | 15.99 | 640 | 0.6787 | 0.8400 | |
|
| 0.0555 | 16.99 | 680 | 0.6641 | 0.8454 | |
|
| 0.052 | 17.99 | 720 | 0.7213 | 0.8524 | |
|
| 0.0589 | 18.99 | 760 | 0.6917 | 0.8470 | |
|
| 0.0506 | 19.99 | 800 | 0.7090 | 0.8478 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|