swin-base-patch4-window7-224-20epochs-finetuned-memes

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7090
  • Accuracy: 0.8478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0238 0.99 40 0.9636 0.6445
0.777 1.99 80 0.6591 0.7666
0.4763 2.99 120 0.5381 0.8130
0.3215 3.99 160 0.5244 0.8253
0.2179 4.99 200 0.5123 0.8238
0.1868 5.99 240 0.5052 0.8308
0.154 6.99 280 0.5444 0.8338
0.1166 7.99 320 0.6318 0.8238
0.1099 8.99 360 0.5656 0.8338
0.0925 9.99 400 0.6057 0.8338
0.0779 10.99 440 0.5942 0.8393
0.0629 11.99 480 0.6112 0.8400
0.0742 12.99 520 0.6588 0.8331
0.0752 13.99 560 0.6143 0.8408
0.0577 14.99 600 0.6450 0.8516
0.0589 15.99 640 0.6787 0.8400
0.0555 16.99 680 0.6641 0.8454
0.052 17.99 720 0.7213 0.8524
0.0589 18.99 760 0.6917 0.8470
0.0506 19.99 800 0.7090 0.8478

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results