|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: deepset/gbert-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: gbert-large-topic_classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gbert-large-topic_classification |
|
|
|
This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5093 |
|
- Precision: 0.9100 |
|
- Recall: 0.8993 |
|
- F1: 0.9042 |
|
- Accuracy: 0.9167 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 44 | 0.6465 | 0.8897 | 0.8138 | 0.8179 | 0.8480 | |
|
| No log | 2.0 | 88 | 0.2949 | 0.9116 | 0.9110 | 0.9106 | 0.9118 | |
|
| No log | 3.0 | 132 | 0.4110 | 0.9298 | 0.8939 | 0.9020 | 0.9167 | |
|
| No log | 4.0 | 176 | 0.6242 | 0.9261 | 0.8756 | 0.8911 | 0.9020 | |
|
| No log | 5.0 | 220 | 0.5606 | 0.9208 | 0.8757 | 0.8897 | 0.9020 | |
|
| No log | 6.0 | 264 | 0.6164 | 0.9201 | 0.8867 | 0.9001 | 0.9069 | |
|
| No log | 7.0 | 308 | 0.4898 | 0.9155 | 0.9001 | 0.9071 | 0.9167 | |
|
| No log | 8.0 | 352 | 0.4999 | 0.9191 | 0.9029 | 0.9102 | 0.9216 | |
|
| No log | 9.0 | 396 | 0.5073 | 0.9100 | 0.8993 | 0.9042 | 0.9167 | |
|
| No log | 10.0 | 440 | 0.5093 | 0.9100 | 0.8993 | 0.9042 | 0.9167 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|