izaitova's picture
End of training
5b3e75f verified
metadata
library_name: transformers
license: mit
base_model: deepset/gbert-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: gbert-large-topic_classification
    results: []

gbert-large-topic_classification

This model is a fine-tuned version of deepset/gbert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5093
  • Precision: 0.9100
  • Recall: 0.8993
  • F1: 0.9042
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 44 0.6465 0.8897 0.8138 0.8179 0.8480
No log 2.0 88 0.2949 0.9116 0.9110 0.9106 0.9118
No log 3.0 132 0.4110 0.9298 0.8939 0.9020 0.9167
No log 4.0 176 0.6242 0.9261 0.8756 0.8911 0.9020
No log 5.0 220 0.5606 0.9208 0.8757 0.8897 0.9020
No log 6.0 264 0.6164 0.9201 0.8867 0.9001 0.9069
No log 7.0 308 0.4898 0.9155 0.9001 0.9071 0.9167
No log 8.0 352 0.4999 0.9191 0.9029 0.9102 0.9216
No log 9.0 396 0.5073 0.9100 0.8993 0.9042 0.9167
No log 10.0 440 0.5093 0.9100 0.8993 0.9042 0.9167

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1