|
--- |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- moe |
|
- merge |
|
- mergekit |
|
model-index: |
|
- name: TinyUltra-4x1.1B-Base-Alpha |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 34.9 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 61.42 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 25.42 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 37.59 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 65.75 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 2.58 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha |
|
name: Open LLM Leaderboard |
|
widget: |
|
- example_title: Pirate! |
|
messages: |
|
- role: system |
|
content: You are a pirate chatbot who always responds with Arr! |
|
- role: user |
|
content: "There's a llama on my lawn, how can I get rid of him?" |
|
output: |
|
text: >- |
|
Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare |
|
sight, but I've got a plan that might help ye get rid of 'im. Ye'll need |
|
to gather some carrots and hay, and then lure the llama away with the |
|
promise of a tasty treat. Once he's gone, ye can clean up yer lawn and |
|
enjoy the peace and quiet once again. But beware, me hearty, for there |
|
may be more llamas where that one came from! Arr! |
|
--- |
|
|
|
![image/jpeg](https://i.imgur.com/rx3ckCc.jpeg) |
|
|
|
# TinyUltra-4x1.1B-Base-Alpha |
|
|
|
TinyUltra-4x1.1B-Base-Alpha is a Mixure of Experts (MoE) made with the following models using MergeKit: |
|
* [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) |
|
* [vihangd/DopeyTinyLlama-1.1B-v1](https://huggingface.co/vihangd/DopeyTinyLlama-1.1B-v1) |
|
* [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) |
|
* [Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test](https://huggingface.co/Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test) |
|
|
|
|
|
# Modelfile/Prompt format |
|
```markdown |
|
SYSTEM You are a TinyUltra, helpful and lovely AI assistant. |
|
|
|
TEMPLATE <|system|> {{ .System }}</s> <|user|> {{ .Prompt }}</s> <|assistant|> |
|
|
|
PARAMETER stop <|system|> |
|
PARAMETER stop <|user|> |
|
PARAMETER stop <|assistant|> |
|
PARAMETER stop </s> |
|
``` |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
gate_mode: hidden |
|
dtype: float16 |
|
experts: |
|
- source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
positive_prompts: |
|
- "Help me debug this code." |
|
- "Rewrite this function in Python." |
|
- "Optimize this C# script." |
|
- "Implement this feature using JavaScript." |
|
- "Convert this HTML structure into a more efficient design." |
|
- "Assist me with writing a program that" |
|
- source_model: vihangd/DopeyTinyLlama-1.1B-v1 |
|
positive_prompts: |
|
- "How do you" |
|
- "Explain the concept of" |
|
- "Give an overview of" |
|
- "Compare and contrast between" |
|
- "Provide information about" |
|
- "Help me understand" |
|
- "Summarize" |
|
- "Make a recommendation on" |
|
- "Answer this question" |
|
- source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b |
|
positive_prompts: |
|
- "Write a program to solve this problem" |
|
- "Modify this function to improve its performance" |
|
- "Refactor this code to enhance readability" |
|
- "Create a custom function for this specific use case" |
|
- "Optimize this algorithm to reduce computational complexity" |
|
- "Implement this feature by extending existing codebase" |
|
- "Integrate this API call into the application" |
|
- "Help me troubleshoot and fix this bug" |
|
- "Review and test this code snippet before deployment" |
|
- "Analyze this error log to identify potential issues" |
|
- "Generate a set of unit tests for this module" |
|
- "Evaluate different approaches to solving this problem" |
|
- "Do a web search for" |
|
- "Use the plugin to" |
|
- source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test |
|
positive_prompts: |
|
- "add these numbers" |
|
- "whats 2+2" |
|
- "subtraction" |
|
- "division" |
|
- "multiplication" |
|
- "addition" |
|
- "I need help with a math problem" |
|
- "Solve for x" |
|
- "Add these two numbers together: 4 + 3 = 7" |
|
- "Multiply 5 by 6: 5 * 6 = 30" |
|
- "Divide 8 by 2: 8 / 2 = 4" |
|
- "Find the remainder when 9 is divided by 3: 9 % 3 = 0" |
|
- "Calculate the square root of 16: sqrt(16) = 4" |
|
- "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)" |
|
- "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)" |
|
- "Solve for x in the equation 3x - 7 = 2x + 5: x = 12" |
|
- "Graph the line y = 2x + 3" |
|
- "Approximate pi to three decimal places: 3.142" |
|
- "Find the derivative of f(x) = sin(x): f'(x) = cos(x)" |
|
- "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3" |
|
- "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2" |
|
- "Solve the system of equations Ax = b: x = [-5, 10]" |
|
- "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "gmonsoon/TinyUltra-4x1.1B-Base-Alpha" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
GGUF: https://huggingface.co/indischepartij/TinyUltra-4x1.1B-Base-Alpha-GGUF |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_indischepartij__TinyUltra-4x1.1B-Base-Alpha) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |37.94| |
|
|AI2 Reasoning Challenge (25-Shot)|34.90| |
|
|HellaSwag (10-Shot) |61.42| |
|
|MMLU (5-Shot) |25.42| |
|
|TruthfulQA (0-shot) |37.59| |
|
|Winogrande (5-shot) |65.75| |
|
|GSM8k (5-shot) | 2.58| |
|
|
|
|