--- license: cc-by-nc-4.0 tags: - moe - merge - mergekit model-index: - name: TinyUltra-4x1.1B-Base-Alpha results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 34.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 61.42 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 37.59 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 65.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 2.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=indischepartij/TinyUltra-4x1.1B-Base-Alpha name: Open LLM Leaderboard widget: - example_title: Pirate! messages: - role: system content: You are a pirate chatbot who always responds with Arr! - role: user content: "There's a llama on my lawn, how can I get rid of him?" output: text: >- Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare sight, but I've got a plan that might help ye get rid of 'im. Ye'll need to gather some carrots and hay, and then lure the llama away with the promise of a tasty treat. Once he's gone, ye can clean up yer lawn and enjoy the peace and quiet once again. But beware, me hearty, for there may be more llamas where that one came from! Arr! --- ![image/jpeg](https://i.imgur.com/rx3ckCc.jpeg) # TinyUltra-4x1.1B-Base-Alpha TinyUltra-4x1.1B-Base-Alpha is a Mixure of Experts (MoE) made with the following models using MergeKit: * [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) * [vihangd/DopeyTinyLlama-1.1B-v1](https://huggingface.co/vihangd/DopeyTinyLlama-1.1B-v1) * [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) * [Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test](https://huggingface.co/Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test) # Modelfile/Prompt format ```markdown SYSTEM You are a TinyUltra, helpful and lovely AI assistant. TEMPLATE <|system|> {{ .System }} <|user|> {{ .Prompt }} <|assistant|> PARAMETER stop <|system|> PARAMETER stop <|user|> PARAMETER stop <|assistant|> PARAMETER stop ``` ## 🧩 Configuration ```yaml base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 gate_mode: hidden dtype: float16 experts: - source_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 positive_prompts: - "Help me debug this code." - "Rewrite this function in Python." - "Optimize this C# script." - "Implement this feature using JavaScript." - "Convert this HTML structure into a more efficient design." - "Assist me with writing a program that" - source_model: vihangd/DopeyTinyLlama-1.1B-v1 positive_prompts: - "How do you" - "Explain the concept of" - "Give an overview of" - "Compare and contrast between" - "Provide information about" - "Help me understand" - "Summarize" - "Make a recommendation on" - "Answer this question" - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b positive_prompts: - "Write a program to solve this problem" - "Modify this function to improve its performance" - "Refactor this code to enhance readability" - "Create a custom function for this specific use case" - "Optimize this algorithm to reduce computational complexity" - "Implement this feature by extending existing codebase" - "Integrate this API call into the application" - "Help me troubleshoot and fix this bug" - "Review and test this code snippet before deployment" - "Analyze this error log to identify potential issues" - "Generate a set of unit tests for this module" - "Evaluate different approaches to solving this problem" - "Do a web search for" - "Use the plugin to" - source_model: Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test positive_prompts: - "add these numbers" - "whats 2+2" - "subtraction" - "division" - "multiplication" - "addition" - "I need help with a math problem" - "Solve for x" - "Add these two numbers together: 4 + 3 = 7" - "Multiply 5 by 6: 5 * 6 = 30" - "Divide 8 by 2: 8 / 2 = 4" - "Find the remainder when 9 is divided by 3: 9 % 3 = 0" - "Calculate the square root of 16: sqrt(16) = 4" - "Simplify the expression (a+b)/(c-d): (a+b)/(c-d)" - "Factor out the common factor of 2 from 4x + 6y: 2(2x + 3y)" - "Solve for x in the equation 3x - 7 = 2x + 5: x = 12" - "Graph the line y = 2x + 3" - "Approximate pi to three decimal places: 3.142" - "Find the derivative of f(x) = sin(x): f'(x) = cos(x)" - "Integrate g(x) = x^2 over the interval [0, 1]: g(1) - g(0) = 1/3" - "Calculate the determinant of the matrix A = [[2, 3], [4, 5]]: det(A) = 2*5 - 3*4 = -2" - "Solve the system of equations Ax = b: x = [-5, 10]" - "Calculate the sum of the first n natural numbers using the formula Sn = n*(n+1)/2: sum(n=1 to 5) = 15" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "gmonsoon/TinyUltra-4x1.1B-Base-Alpha" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` GGUF: https://huggingface.co/indischepartij/TinyUltra-4x1.1B-Base-Alpha-GGUF # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_indischepartij__TinyUltra-4x1.1B-Base-Alpha) | Metric |Value| |---------------------------------|----:| |Avg. |37.94| |AI2 Reasoning Challenge (25-Shot)|34.90| |HellaSwag (10-Shot) |61.42| |MMLU (5-Shot) |25.42| |TruthfulQA (0-shot) |37.59| |Winogrande (5-shot) |65.75| |GSM8k (5-shot) | 2.58|