|
--- |
|
library_name: transformers |
|
base_model: iamTangsang/MarianMT-Nepali-to-English |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: MarianMT-Nepali-to-English-Synthetic-Pretrain-Continued |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MarianMT-Nepali-to-English-Synthetic-Pretrain-Continued |
|
|
|
This model is a fine-tuned version of [iamTangsang/MarianMT-Nepali-to-English](https://huggingface.co/iamTangsang/MarianMT-Nepali-to-English) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0186 |
|
- Bleu: 30.3843 |
|
- Gen Len: 73.8617 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss | |
|
|:-------------:|:------:|:------:|:-------:|:-------:|:---------------:| |
|
| 1.1924 | 0.0561 | 12000 | 26.1232 | 74.765 | 1.3707 | |
|
| 1.0978 | 0.1122 | 24000 | 26.0469 | 78.0433 | 1.2622 | |
|
| 1.0316 | 0.1684 | 36000 | 28.0954 | 73.6692 | 1.2075 | |
|
| 0.9993 | 0.2245 | 48000 | 28.1497 | 75.1633 | 1.1745 | |
|
| 0.9651 | 0.2806 | 60000 | 29.1482 | 75.9908 | 1.1428 | |
|
| 0.9415 | 0.3367 | 72000 | 27.0537 | 82.6383 | 1.1183 | |
|
| 0.9251 | 0.3928 | 84000 | 27.637 | 79.2592 | 1.0864 | |
|
| 0.9008 | 0.4489 | 96000 | 29.0405 | 76.6583 | 1.0683 | |
|
| 0.8726 | 0.5051 | 108000 | 29.923 | 75.4483 | 1.0494 | |
|
| 0.8701 | 0.5612 | 120000 | 29.2328 | 77.2858 | 1.0316 | |
|
| 0.8546 | 0.6173 | 132000 | 29.6585 | 76.1308 | 1.0185 | |
|
| 0.8392 | 0.6734 | 144000 | 30.5079 | 78.0417 | 1.0072 | |
|
| 0.9316 | 0.7295 | 156000 | 29.264 | 71.7958 | 1.1055 | |
|
| 0.9008 | 0.7857 | 168000 | 27.2107 | 80.45 | 1.0779 | |
|
| 0.8982 | 0.8418 | 180000 | 27.7493 | 78.6583 | 1.0645 | |
|
| 0.8655 | 0.8979 | 192000 | 28.2546 | 79.6033 | 1.0438 | |
|
| 0.8654 | 0.9540 | 204000 | 1.0324 | 30.2355 | 73.8317 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.20.3 |
|
|