MarianMT-Nepali-to-English-Synthetic-Pretrain-Continued
This model is a fine-tuned version of iamTangsang/MarianMT-Nepali-to-English on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0186
- Bleu: 30.3843
- Gen Len: 73.8617
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss |
---|---|---|---|---|---|
1.1924 | 0.0561 | 12000 | 26.1232 | 74.765 | 1.3707 |
1.0978 | 0.1122 | 24000 | 26.0469 | 78.0433 | 1.2622 |
1.0316 | 0.1684 | 36000 | 28.0954 | 73.6692 | 1.2075 |
0.9993 | 0.2245 | 48000 | 28.1497 | 75.1633 | 1.1745 |
0.9651 | 0.2806 | 60000 | 29.1482 | 75.9908 | 1.1428 |
0.9415 | 0.3367 | 72000 | 27.0537 | 82.6383 | 1.1183 |
0.9251 | 0.3928 | 84000 | 27.637 | 79.2592 | 1.0864 |
0.9008 | 0.4489 | 96000 | 29.0405 | 76.6583 | 1.0683 |
0.8726 | 0.5051 | 108000 | 29.923 | 75.4483 | 1.0494 |
0.8701 | 0.5612 | 120000 | 29.2328 | 77.2858 | 1.0316 |
0.8546 | 0.6173 | 132000 | 29.6585 | 76.1308 | 1.0185 |
0.8392 | 0.6734 | 144000 | 30.5079 | 78.0417 | 1.0072 |
0.9316 | 0.7295 | 156000 | 29.264 | 71.7958 | 1.1055 |
0.9008 | 0.7857 | 168000 | 27.2107 | 80.45 | 1.0779 |
0.8982 | 0.8418 | 180000 | 27.7493 | 78.6583 | 1.0645 |
0.8655 | 0.8979 | 192000 | 28.2546 | 79.6033 | 1.0438 |
0.8654 | 0.9540 | 204000 | 1.0324 | 30.2355 | 73.8317 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 60
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.