|
--- |
|
language: en |
|
widget: |
|
- text: "I love AutoTrain 🤗" |
|
datasets: |
|
- hsaglamlar/autotrain-data-stress_v2 |
|
co2_eq_emissions: 2.7282806494855265 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 1178743973 |
|
- CO2 Emissions (in grams): 2.7282806494855265 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.431733638048172 |
|
- Accuracy: 0.7976190476190477 |
|
- Precision: 0.6918918918918919 |
|
- Recall: 0.8205128205128205 |
|
- AUC: 0.8952141608391608 |
|
- F1: 0.7507331378299119 |
|
|
|
## Usage |
|
This model finds self-reported stress from txt. |
|
|
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fhsaglamlar%2Fautotrain-stress_v2-1178743973%3C%2Fspan%3E%3C!-- HTML_TAG_END --> |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |