File size: 1,224 Bytes
6666c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47af9ba
 
6666c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- hsaglamlar/autotrain-data-stress_v2
co2_eq_emissions: 2.7282806494855265
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 1178743973
- CO2 Emissions (in grams): 2.7282806494855265

## Validation Metrics

- Loss: 0.431733638048172
- Accuracy: 0.7976190476190477
- Precision: 0.6918918918918919
- Recall: 0.8205128205128205
- AUC: 0.8952141608391608
- F1: 0.7507331378299119

## Usage
This model finds self-reported stress from txt.


You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fhsaglamlar%2Fautotrain-stress_v2-1178743973%3C%2Fspan%3E
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```